本文说明的线程池是定长线程池,定长线程池创建指定个数的线程。当有任务要执行时,线程调度器会找一个空闲线程来执行任务,若没用空闲线程,就会等线程忙完了后再执行任务。
举个例子,找出1到200000里质数的集合,最简单的方法是一个for循环。但用一个线程处理这么多数,效率很低。可以考虑使用多线程的方式,那就到了线程池发挥作用的时候了。把1到200000分成四个区间,启动四个线程处理这四个区间。下面的实例代码中用for循环和线程池的方式求出了1到200000之间质数的集合大小及耗时,可以看出线程池节约了大概一半的时间
输出质数个数和耗时:
17985 3323354928
17985 1675945543
public class ParallerComputing {
static boolean isPrime(int num) {
for (int i = 2; i <= num / 2; i++) {
if (num % i == 0) {
return false;
}
}
return true;
}
static List<Integer> getPrimes(int start, int end) {
List<Integer> res = new ArrayList<>();
for (int i = start; i < end; i++) {
if (isPrime(i)) {
res.add(i);
}
}
return res;
}
static class MyTask implements Callable<List<Integer>> {
int start, end;
public MyTask(int start, int end) {
this.start = start;
this.end = end;
}
@Override
public List<Integer> call() throws Exception {
return getPrimes(start, end);
}
}
public static void main(String[] args) {
long start = System.nanoTime();
List<Integer> l1 = getPrimes(1, 200000);
long end = System.nanoTime();
System.out.println(l1.size() + " " + (end - start));
ExecutorService service = Executors.newFixedThreadPool(4);
Future<List<Integer>> f1 = service.submit(new MyTask(1, 50000));
Future<List<Integer>> f2 = service.submit(new MyTask(50001, 100000));
Future<List<Integer>> f3 = service.submit(new MyTask(100001, 150000));
Future<List<Integer>> f4 = service.submit(new MyTask(150001, 200000));
try {
long s = System.nanoTime();
List<Integer> list1 = f1.get();
List<Integer> list2 = f2.get();
List<Integer> list3 = f3.get();
List<Integer> list4 = f4.get();
System.out.println(list1.size() + list2.size() + list3.size() + list4.size() + " " + (System.nanoTime() - s));
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
}