传送门:P1002 [NOIP2002 普及组] 过河卒 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
如果你还没有学过背包问题的话,推荐你看一下我的这一篇博客:
https://blog.csdn.net/jinjiayang/article/details/127621842
题面
如果你不愿点击传送门的话,这是题目
题目描述
LiYuxiang 是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同种类的草药,采每一种都需要一些时间,每一种也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是 LiYuxiang,你能完成这个任务吗?
此题和原题的不同点:
11. 每种草药可以无限制地疯狂采摘。
22. 药的种类眼花缭乱,采药时间好长好长啊!师傅等得菊花都谢了!
输入格式
输入第一行有两个整数,分别代表总共能够用来采药的时间 t 和代表山洞里的草药的数目 m。
第 2 到第 (m+1) 行,每行两个整数,第 (i+1) 行的整数 ai,bi 分别表示采摘第 i 种草药的时间和该草药的价值。
输出格式
输出一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。
输入输出样例
输入 #1
70 3 71 100 69 1 1 2
输出 #1
140
说明/提示
数据规模与约定
- 对于 30% 的数据,保证 m≤103 。
- 对于 100% 的数据,保证 1≤m≤10^4,1≤t≤10^7,且 1≤m×t≤10^7,1≤ai,bi≤10^4。
题解
如果你看过0/1背包的话,下面所述的对你而言应该是很轻松的
判断
很明显,这一题满足最优子结构和无后效性原理,可使用动态规划解决
状态转移方程
在上一篇0/1背包中我们知道,状态转移方程是
dp[j] = max(dp[j-w[i]] + v[i], dp[j]);
在这一篇中,显然状态转移方程仍是如上,那么,代码有什么区别吗?
Difference
在上一篇中,我们知道,在枚举j,就是枚举还剩下j的时间可用的时候,我们使用的代码是
for(int j=c; j>=wgt[i]; j--)
从c到剩余时间逆推,可使由n2的复杂度降到n时不产生冲突,是与i-1的数据作比较;
而如今,我们要从剩余时间到c作正推,是与i(当前数据)作比较。
输出
显然还是dp[c](当还有c时间的时候的最优解,即答案)
最终完整代码
#include<bits/stdc++.h>
using namespace std;
int wgt[1002], vls[1002], dp[1002];
int n, c;
int main()
{
cin >> c >> n;
for(int i=1; i<=n; i++) cin >> wgt[i] >> vls[i];
for(int i=1; i<=n; i++) for(int j=wgt[i]; j<=c; j++)
{
dp[j] = max(dp[j-wgt[i]] + vls[i], dp[j]);
// cout << i << ' ' << j << ' ' << dp[j] << endl;
}
cout << dp[c];
}
交上去RE,为什么?
Tips
1.记得开long long
2.数组的大小
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll wgt[10002], vls[10002], dp[10000002];
ll n, c;
int main()
{
cin >> c >> n;
for(int i=1; i<=n; i++) cin >> wgt[i] >> vls[i];
for(int i=1; i<=n; i++) for(int j=wgt[i]; j<=c; j++)
{
dp[j] = max(dp[j-wgt[i]] + vls[i], dp[j]);
// cout << i << ' ' << j << ' ' << dp[j] << endl;
}
cout << dp[c];
}
time to 点赞
看完后,别忘了
点赞!
收藏!
Thanks……