C++ 完全背包(比0/1背包难1/inf左右的DP)

本文通过一个具体的编程竞赛题目,详细介绍了如何使用动态规划解决无限背包问题,并提供了完整的代码实现及注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门:P1002 [NOIP2002 普及组] 过河卒 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

如果你还没有学过背包问题的话,推荐你看一下我的这一篇博客:

https://blog.csdn.net/jinjiayang/article/details/127621842

题面

 如果你不愿点击传送门的话,这是题目

题目描述

LiYuxiang 是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同种类的草药,采每一种都需要一些时间,每一种也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”

如果你是 LiYuxiang,你能完成这个任务吗?

此题和原题的不同点:

11. 每种草药可以无限制地疯狂采摘。

22. 药的种类眼花缭乱,采药时间好长好长啊!师傅等得菊花都谢了!

输入格式

输入第一行有两个整数,分别代表总共能够用来采药的时间 t 和代表山洞里的草药的数目 m。

第 2 到第 (m+1) 行,每行两个整数,第 (i+1) 行的整数 ai​,bi​ 分别表示采摘第 i 种草药的时间和该草药的价值。

输出格式

输出一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。

输入输出样例

输入 #1

70 3
71 100
69 1
1 2

输出 #1

140

说明/提示

数据规模与约定

  • 对于 30% 的数据,保证 m≤103 。
  • 对于 100% 的数据,保证 1≤m≤10^4,1≤t≤10^7,且 1≤m×t≤10^7,1≤ai​,bi​≤10^4。

题解

如果你看过0/1背包的话,下面所述的对你而言应该是很轻松的

判断

很明显,这一题满足最优子结构和无后效性原理,可使用动态规划解决

状态转移方程

在上一篇0/1背包中我们知道,状态转移方程是

dp[j] = max(dp[j-w[i]] + v[i], dp[j]);

在这一篇中,显然状态转移方程仍是如上,那么,代码有什么区别吗?

Difference

在上一篇中,我们知道,在枚举j,就是枚举还剩下j的时间可用的时候,我们使用的代码是

for(int j=c; j>=wgt[i]; j--)

从c到剩余时间逆推,可使由n2的复杂度降到n时不产生冲突,是与i-1的数据作比较;

而如今,我们要从剩余时间到c作正推,是与i(当前数据)作比较。

输出

显然还是dp[c](当还有c时间的时候的最优解,即答案)

最终完整代码

#include<bits/stdc++.h>
using namespace std; 

int wgt[1002], vls[1002], dp[1002];
int n, c;
int main()
{
	cin >> c >> n;
	for(int i=1; i<=n; i++) cin >> wgt[i] >> vls[i];
	for(int i=1; i<=n; i++) for(int j=wgt[i]; j<=c; j++)
	{
		dp[j] = max(dp[j-wgt[i]] + vls[i], dp[j]);
//		cout << i << ' ' << j << ' ' << dp[j] << endl;
	 } 
	cout << dp[c];
}

交上去RE,为什么?

Tips

1.记得开long long

2.数组的大小

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; 

ll wgt[10002], vls[10002], dp[10000002];
ll n, c;
int main()
{
	cin >> c >> n;
	for(int i=1; i<=n; i++) cin >> wgt[i] >> vls[i];
	for(int i=1; i<=n; i++) for(int j=wgt[i]; j<=c; j++)
	{
		dp[j] = max(dp[j-wgt[i]] + vls[i], dp[j]);
//		cout << i << ' ' << j << ' ' << dp[j] << endl;
	 } 
	cout << dp[c];
}

time to 点赞

看完后,别忘了

点赞!

收藏!

Thanks……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嘉定世外的JinJiayang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值