指数幂
(正整数指数幂)若a是实数,n是正整数,称aaaa...a(n个)= a^n,读作a的n次幂(power),a叫做底数,n叫做指数(exponent).
(零指数幂)规定a^0 = 1,有时要求a是非零实数.
(负整数指数幂)规定a^(-n)是a^n x = 1的根,其中a为非零实数,n为自然数.
正整数指数幂、负整数指数幂和零指数幂统称整数指数幂.
(有理数指数幂)规定a^(p/q)是x^q = a^p的非负实根,其中a为正实数,p,q为整数,有理数指数幂是定义明确的.
(根式)其中a1/p称为a的非负p次方根,p是大于1的整数,a是非负实数。
幂的运算性质有同底数幂的乘法,幂的乘方和积的乘方.
(实数指数幂)我们已将指数的范围拓展到了有理数,说明a^n当a大于0时有完全确定的意义。因此当n是任意实数时,a^n仍可以被定义,且前述的三个运算性质仍然成立。对于实数指数幂的严格定义,我们将在更高等的分析课程中继续学习.
幂的运算性质:
对任意给定的正实数a,b及实数s,t,成立:
a^s a^t = a^(s+t),(a^s)^t = a^(st),(ab)^s = a^s b^s。
幂的基本不等式:当a>1,s>0,恒成立a^s >1,这里不予证明.
对数(logarithm)
在a>0,a≠1,且N>0的条件下,唯一满足a^x = N的实数x,称为N以a为底的对数(logarithm),并用符号log_a N表示,N称为真数.
当对数的底为10时,称为常用对数,记作lg x;当对数的底为无理数e(约为2.718)为底的对数称为自然对数,记作ln x.
显然alog_a N = N成立,这同时也是对数的另一个定义.
由此,若log_a N = log_a M,则N = M,又有log_a 1 = 0,log_a a = 1.
由幂的运算性质,可得对数的三大运算性质:
当M>0,N>0时,实数c任意给定,有:
log_a (MN) = log_a M+log_a N,log_a (M/N) = log_a M - log_a N,log_a N^c = c log_a N.
因此,对数可以将乘除运算化为加减运算,也能将乘方、开方运算化为乘除运算,与指数幂相反.
(换底公式)如果b也是一个不等于1的正数,那么:log_a b log_b N = log_a N, 于是得到,log_a b与log_b a互为倒数.