[纯数] 函数理论初步

本文介绍了映射的概念,包括定义域、值域和各种类型的映射(单射、满射、双射以及逆映射)。还涵盖了函数的性质,如奇偶性、单调性、周期性、连续性、极值以及零点定理和介值定理。最后提到了函数的割线与切线概念及其特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

映射(mapping)

若A、B之间存在对应关系,且使得A中的任意元素a,都有f(a)在B中,则我们称f:A->B是一个映射,A称为定义域(domain),B称为值域(range),同时f(a)称为原像a在映射f下的像.

若a≠b,则f(a)≠f(b),排除多对一,则称f为单射(injection);

若所有b∈B,都存在a∈A且f(a)=b,则称f为满射(surjection);

若f既是单射也是满射则称其为双射(bijection),又称一一映射. 若f是双射,且g(f(x)) = x,则称g是f的逆映射(inverse mapping),记作g = f^-1.

集合的势:若集合A和集合B存在双射,则称A、B等势,记作A~B.

函数(function)

值域为数集的映射称为函数(function),通常对于函数和映射不作区分. 因此也称逆映射为反函数. 实函数f的图象是集合{(x, f(x)) | x 属于 D},可在二维欧式平面上表示.

函数的运算(operation of function):

函数的和差:(f+g)(x) = f(x)+g(x);函数的积:(f·g)(x) = f(x)g(x);

函数的商:(f/g)(x) = f(x) / g(x),其中g(x)≠0;

函数的复合(composite):(f\circ g)(x) = f(g(x)).

容易看出,函数的复合满足结合律,一般不满足交换律.

基本初等函数(basic elementary function):幂函数(power function)、指数函数(exponential function)、对数函数(logarithmic function)、三角函数(trigonometric function)、反三角函数(inverse trigonometric function)和常数函数(constant function).

初等函数(elementary function):初等函数是指基本初等函数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生,并且能用一个解析式表示的函数.

函数的奇偶性(parity):

已知f的定义域关于原点对称. 若恒有f(x) = f(-x),则称f为偶函数(even function);若f(x)=-f(x),则称f为奇函数(odd function).

例如,y=xn当n为奇数时是奇函数,当n是偶数是偶函数,易证。

函数的单调性(monotonicity):

若f在区间S上恒有若a<b则f(a)<f(b),则称f是S上的严格增函数(increasing)的,严格减函数(decreasing)类似;若允许等号出现,称其为S上的增函数,减函数类似类似. 增函数和减函数统称为单调函数,也称f在S是单调的,S是f的一个单调区间.

函数的周期性(periodicity):若f在区间S上恒有f(x)=f(x+k),则称f为S上的周期函数,S称为f的一个周期,非零常数k称为f在S上的周期(period). 显然,若k是f的周期,则ak(a是非零整数)也是f的周期. 即使周期存在,最小正周期也不一定存在.

函数的连续性(continuity):

设函数f在a点有定义,且对于任意ε> 0,都存在a的邻域U(函数f在U上有定义),使得U中的所有点b,都有|f(b)-f(a)| <ε,则称f在a点连续。若f在(a,b)上的每一点都连续,称f在(a,b)上连续.

函数的极值:

设函数f在区间(a, b)上有定义. 若x0∈(a, b),存在x0的邻域U包含于(a, b),使得任意x∈U,都有f(x)<f(x0),则称x0是f的极大值点,f(x0)是f的极大值,极小值(点)类似. 极大值点和极小值点统称为极值点,极大值和极小值统称极值.

零点定理(Zero theorem):

若函数f在[a,b]上连续,且f(a)f(b)<0,则在[a,b]内存在ξ,使得f(ξ) = 0。

零点定理的几何意义是显然的(trivial),即一段连续曲线上a,b两点分别位于x轴两侧,则该连续曲线的ab段经过x轴.

介值定理(Intermediate value theorem):

若函数f在[a,b]上连续,则对于[min{f(a), f(b)}, max{f(a), f(b)}]中的任何值y,都在[a,b]内存在ξ,使得f(ξ)=y.

显然地,零点定理是令0∈[a,b],y=0时,介值定理的推论.

函数的割线和切线:

过点(a, b),点(c, d)的直线是一个一次函数y = ax+b的图象(解析式可以用待定系数法求出,不再赘述).

因此过点(a, f(a)),点(b, f(b))的直线就是过这两点的割线.

若直线OA是函数f在A点的割线,则当点B趋向于点A时,一定割线OB和切线OA的夹角趋向于0. 函数不一定在每一点都有切线,如y = |x|在0点的切线不存在.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嘉定世外的JinJiayang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值