[文献阅读]dropout as a bayesian approximation: representing model uncertainty in deep learning

剑桥大学Ghahramani发表在ICML16.

【abstract】用于回归和分类的DL工具没有表示模型不确定性。bayesian模型有数学上完备的框架推导模型不确定性,但常有过高的计算代价。 
文章将深度神经网络中的dropout训练理解为 深度高斯过程 中的近似贝叶斯推理,通过dropout NN建模不确定性,不影响计算复杂度和模型准确性。仔细研究了dropout表示不确定性的属性。MNIST数据上的实验,各种网络结构,非线性函数模型,能在预测似然和RMSE上达到最新水平。考虑了深度强化学习中使用dropout不确定性。

【keypoint】NN的bayesian VB,把dropout解释为后验分布为mixture of norm, scale=0带来的参数的稀疏性/特征的选择。


背景: DL 不确定性。

离训练数据很远的点的分类,应该有一些不确定性? 
实践中关键系统,需要知道模型不确定性,进而将不确定的结果交给人来处理。 
强化学习中知道不确定性,可以在开发和探索环境中做选择。

bayesian 全连接NN

神经网络

训练数据 N 个,输入(特征)X,输出(标签)Y。 
NN模型, L 层, 
i 层的权重参数 Wi ,维度 Ki×Ki1 ; 
i 层的bias向量 bi ,维度 Ki 。 
模型最终输出 y^ 。 
损失函数 E (比如softmax loss, square loss), L2 正则项。 
目标函数  L=1NiE(yi,yi^)+λLj=1(||Wj||2+||bj||2)

概率表示

共L层 的参数  W={Wi}  
L层网络最终输出 
y^(x,W)=1KLWLσ(1K1W2σ(W1x+b1))  
预测概率 
p(y|x,W)=N(y;y^(x,W),1τID)  
p(y|x,X,Y)=p(y|x,W)p(W|X,Y)dW  
其中后验 p(W|X,Y)  
参数的先验  WimnN(0,1) bp(b)

dropout

二元随机变量,第 i 层取值为1的概率为 pi
对除了最后一层的每一层的每一个单元,随机采样,当二元随机变量取0的时候丢弃该单元(输出值置0?) 
第i-1层到第i层的参数 Wi 大小为 Ki×Ki1 , 第i-1层 Ki1 个单元,第i层 Ki 个单元。 
Wi K_{i-1}$列,讲第j列置0,相当于第i-1层的第j个单元的输出不再对第k层有影响。

zi,jBernoulli(pi) i=1,...,L,j=1,...,Ki1  
Wi=Midiag([zi,j]Kij=1)

bayesian inference

假设后验分布的近似 q(W)
Wi.jpiN(Mi.j,σ2IKi)+(1pi)N(0,σ2IKi)  
pi[0,1] 为不dropout的概率。第i-1层到第i层的权重 Wi 的第j列同时dropout或者不dropout,相当于第i-1层的第j个单元的输出不再对第i层的所有 Ki 个单元其作用。 
biN(mi,σ2IKi)

re-parameter技巧 从后验分布采样 
ϵN(0,1)  
zijBernoulli(pi)  
Wi.j=zij(M1.j+σϵ)+(1zij)σϵ  
bij=mij+σϵ

最小化后验估计 q(W) 与intractable的后验 p(W|X,Y) 之间的KL距离得目标函数 
相当于最大化似然相对于估计后验的期望,同时最小化估计后验与先验的KL距离 
minL=q(W)logp(Y|X,W)dW+KL(q(W)||p(W))

采用Monte Carlo积分,从估计的后验分布采样 W^ , 用求和的形式表示 
minL=Nn=1logp(y|x,W^)+KL(q(W)||p(W))

mixture of Gaussian 与 p(w)的KL距离: 
q(w)=pN(m,σ2)+(1p)N(0,σ2)  
p(w)=N(0,1)  
当w的维度k很大, σ 很小时候,有: 
KL(q(w)||p(w))=p2mTm+C1σ2+C2logσ2+C

所以

  • dropout 相当于假设了参数W的近似后验分布是mixture of 2 Gauss 且  σ=0 , 所以W的近似的后验分布与先验分布的KL距离相当于 L2 norm,且mixture的组合比例概率 pi 是L2 norm的系数。
  • 实践中的操作都相当于是从后验分布的采样,直接给后验分布方便解释的假设分布。但是 
    • 怎么证明是好的假设,后验分布真的是这种分布,这样的解释真的正确? 数值画图?
  • 具体 哪一步 必须 用到 高斯过程 呢?

variational inference

预测分布是 关于模型(的参数)的后验分布的期望 
p(y|x,X,Y)=p(y|x,w)p(w|X,Y)dw  
后验分布p(w|X,Y)通常不能解析地计算得到。 
假设一个分布q(w)去近似后验分布p,最小化两个分布的距离。 
mean-field VB, 用KL衡量两个分布的距离。 
优化目标为:最大化evidence,并最小化估计的后验q与真实后验p的距离。 
这等价于,最大化log似然关于估计后验的期望,并最小化估计后验q与先验p(w)的距离。

深度高斯过程DP

随机变量:一些关于时间的函数,在某一给定时刻,取某一个函数的值。 
随机过程:一些关于时间的函数,各个时刻,取某一个函数的取值。 
高斯过程:取出任意一些时刻的 取值,满足高斯分布。

高斯过程 理论完备

  • uncertainty estimate函数取值
  • 对过拟合鲁棒
  • principled方法条件超参数
  • 通过近似变分inference统计的分布式的inference,可以运用到大数据

高斯过程可以建模 一些函数上的分布。 
输入到输出的函数f: X →Y。为函数f设置先验,求后验。 
p(f|X,Y) \propto p(f) p(Y|f,X)

通过高斯过程 evaluate回归任务中f的后验,estimate分类任务中f的后验。

回归

p(Y,f|X)=p(f)p(Y|X,f)  
=p(F|X)p(Y|F)=N(0,K(X,X))N(F,1τIN)  
数据的特征X确定F,由F加扰动得到标签Y。

分类

p(cn,F|X)=p(F|X)p(cn|F)=N(0,K(X,X))Categorical(expFnddexpFnd)  
由数据特征X确定F,由F加softmax得到属于各类的概率。

分类问题相对于回归问题,由F到Y的不确定性不在扰动,而在结果是各类上的分布-不是某一个类标签。

F是为X每一个点给出了预测,为这N个点一起做预测。 
预测结果,这N个X的预测的均值是0,预测的协方差与X的协方差相关。 
两个输入 xi,xj 比较相似 K(xi,xj) ,则这两个的预测结果F也相似。

协方差函数kernel

协方差:两个变量同时改变, how much the two change together 
协方差函数/kernel:一个随机过程的时序的temporal协方差,随机场的空间的spatial协方差。 
随机过程中两个时间点x,y的取值的协方差 C(x_i,x_j)=cov(z(x_i),z(x_j)) 
稳定的stationary随机过程,两个点的协方差只与两点的时间间隔相关,与是哪个时间点无关。 C(xi,xj)=C(xi+h,xj+h)=Cs(xjxi)

参数化协方差函数 
squared exponential 协方差函数: 
K(d)=exp{(dV)2}
d:两个点的距离–时刻? 
V:参数 
是稳定的,有smooth采样路径。

高斯过程的 variational inference

要积分掉 高斯过程的协方差函数的参数。

假设随机过程中两个时刻(两个输入数据特征) xi,xj 的协方差函数是这样的形式: 
K(xi,xj)=N(w;0,IQ)p(b)σ(wTxi+b)σ(wTxj+b)dwdb  
Q是输入特征 xi  的维度。 
相当于x经过一个一层神经网络,得到  activation=σ(wx+b) ,两个activation的乘积,积分掉参数w,b(关于参数w,b的期望)。

Monte Carlo积分,取K组(w,b)参数 计算K,求平均, 来近似上述积分。 
K^(xi,xj)=1Kkσ(wTkxi+bk)σ(wTkxj+bk) .

对wb积分 对应于 从Q维到R的一层网络的所有情况。 
Monte Carlo积分,假设网络这一层是K个单元,在K种Q维到R的映射上的平均。

输入数据特征Q维 
一层神经网络K个单元 
参数 Wqk  
每一组参数为 W.k,bk , 
两个输出的协方差,用K组 两个输出的乘积 平均 近似。

考虑所有数据集N个输入X的输出F的协方差。

一个数据输入特征x经过K个单元后的activation(并除于 K )为 ϕ , k维的, 
ϕk=1Kσ(W.kx+bk)  
N个数据输入特征X经过K个单元后的activation为 Φ ,是 N×K 维的。 
根据 K^(xi,xj) 的定义, 
K^(X,X)=ΦΦT

F|X,w,bN(0,ΦΦT)  
Y|FN(F,1τIN)  
Y,F|X,w,bN(F;0,ΦΦT)N(Y;F,1τIN)  
Y|X,w,bN(Y;0,ΦΦT+1τIN)

积分掉函数F了 
高斯过程,对预测函数F的分布的协方差K做了参数化的假设wb, 
并且用K组参数W.k,bk去近似K得到  K^
将对函数的后验F|X,Y积分 转换为了 对参数W,b|X,Y积分。

协方差函数 K , L 层的深度高斯过程 可以通过 对GP的协方差函数的谱分解的每个元素设置一个变分分布来估计。谱分解将GP的每一层映射到 明确表示的隐单元的一层。

extensions

  • regression to classification
  • add scale to prior 先验的scale和后验的mixture权重共同确定l2-norm的系数
  • mini-batch ?
  • experiments?
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值