论文阅读:MultiUI 利用网页UI进行丰富文本的视觉理解

《HARNESSING WEBPAGE UIS FOR TEXT-RICH VISUAL UNDERSTANDING》
利用网页UI进行丰富文本的视觉理解

总结

  • grounding和QA部分的数据集占比较大、同时消融实验显示其作用相对较大,并且grounding部分作用和效果呈现scaling正相关
  • 提供了很多web数据处理成多模态训练集的prompt、思路等、提供了开源代码:https://neulab.github.io/MultiUI/

1、前言

  • 1M URLs
  • 2个平台
  • 3种能力:视觉理解和推理、文本识别、定位

在这里插入图片描述

  • 基于充分结构化的网页来合成多模态指令数据集

在这里插入图片描述

2、数据集构建

  • 数据集通过4步构造

在这里插入图片描述

  • 9个任务的具体设计【重点】

在这里插入图片描述

数据分布

  • grounding数据占 3M/7.3M ~ 41%,mobile的grounding占mobile数据的 47.8%
  • 其次占比最多的是 WebQA、ImgQA

在这里插入图片描述

  • Grounding和action的一些数据示例

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3、实验设置

  • 模型结构

在这里插入图片描述

  • 训练策略:两阶段训练

在这里插入图片描述

  • Benchmark

在这里插入图片描述

4、实验结果分析

  • GUI相关任务的实验结果
    • 没有把Seeclick模型在SSpot上的结果放出来(mobile-0.657);

在这里插入图片描述

  • GUI grounding的能力和数据集大小存在正相关关系
    在这里插入图片描述
  • 消融实验说明了 加入grounding数据集对于screenspot评测集的必要性

在这里插入图片描述

  • 两阶段训练效果更优、提升2点左右

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值