阅读
文章平均质量分 67
乱七八糟
谁怕平生太急
110010
展开
-
NLP模型评价
原文:https://homes.cs.washington.edu/~marcotcr/acl20_checklist.pdf译文:https://blog.csdn.net/qq_37236745/article/details/107251063评论:https://zhuanlan.zhihu.com/p/159035275评论:https://zhuanlan.zhihu.com/p/158500675Github:https://github.com/marcotcr/CheckList原创 2021-05-07 16:52:41 · 728 阅读 · 0 评论 -
NLP基本任务
NLP基本任务智能问答多跳问答(1) https://www.cnblogs.com/conghuang/p/11827142.htmlgithub:https://github.com/THUDM/CogQA论文:https://zhuanlan.zhihu.com/p/72981392Q:谁是某部在2003年取景于洛杉矶quality cafe的电影的导演?系统一:在文中抽取与问题相关的实体名称并扩展节点和汇总语义向量快速将注意力定位到相关实体 BERT系统二:利用图神经网络在认知图原创 2021-05-07 16:50:29 · 476 阅读 · 0 评论 -
产业AI公司的简单调研
公司名业务范围代表产品员工人数融资情况/创立时间地点ACTICO金融、信贷ACTICO平台51-200人-芝加哥,新加坡,德国Beyond Limits能源、医疗保健、金融物流解决方案51-200人B轮 2千万美元(2017.6)加州Blackswan Technologies顾客洞察,金融欺诈ELEMENT(企业AI操作系统)51-200人2016年加州Cognite旅游业、教育和法律市场解决方案11-50人-伦敦...原创 2021-02-23 11:04:33 · 341 阅读 · 0 评论 -
百度UNIT和Rasa相关的一些资料
最新综述:对话系统之用户模拟器Rasa任务导向型对话系统——对话管理模型研究最新进展UNIT对话系统的名词解释Query:用户的话Intent:用户意图Slot:说话内容包含的关键信息机器人:在完整对话环境下的对话理解与交互能力技能:在特定对话环境下的对话理解与交互能力,比如天气技能,火车票技能意图:对话中用户想要表达的目的,比如火车票中的订票词槽:影响理解,且会影响结果的关键信息,比如订票中的出发地特征词:影响理解,但不影响结果的关键信息,比如我问问请一天假的流程中的“问问”词典:原创 2021-02-23 10:34:34 · 308 阅读 · 0 评论 -
EM算法-理解
最大似然估计与EM算法如何感性地理解EM算法思想精髓: 先随机初始化一个P1和P2,用它来估计z,然后基于z,还是按照最大似然概率法则去估计新的P1和P2,如果新的P1和P2和我们初始化的P1和P2一样,请问这说明了什么?(此处思考1分钟)这说明我们初始化的P1和P2是一个相当靠谱的估计!换句话说:我们初始化的P1和P2,按照最大似然概率就可以估计出z,然后基于z,按照最大似然概率可以反过来估计出P1和P2,当与我们初始化的P1和P2一样时,说明是P1和P2很有可能就是真实的值。这里面包含了两个交互原创 2020-12-23 14:17:18 · 141 阅读 · 0 评论 -
搜索技术相关的技术框架(部分)
1 特定站点搜索和通用搜索的对比搜索用户天生的“懒惰”、表达含糊以及对搜索结果智能的期待从未改变过。用户对于全网通用搜索和站内搜索的期望差别仅在于搜索范围从全网变为特定站点。而由于用户对他所喜爱的站点的了解、熟悉程度远远超出其对全网的了解,所以用户对搜索服务所存在的各种问题更为敏感,从而有更高的要求。1.1 搜索引擎和全文检索的区别搜索引擎的门槛主要是技术门槛,包括网页数据的快速采集、海...原创 2020-03-12 17:20:39 · 954 阅读 · 0 评论 -
AliCoCo的粗浅理解(一)
近来阅读了一篇阿里电商知识图谱核心技术揭秘,深感大厂的技术先进性,阅读后有如下粗浅总结。阿里电商知识图谱AliCoCo首先,AliCoCo提出了自己的本体体系,或者说构建思路。分为四层:电商概念层,原子概念层,分类体系,和商品层。由下到上的解释是:商品层就是包罗万千的商品。分类体系就是指对这些商品和非商品的多级树形结构的分类,其中一级分类有20个,包括我们经常接触到的 “时间”,“地点”,“动作”,“IP”,也有很少接触到的“品类”,“图案”,“功能”,“口味”等。你或许会疑问,为啥一级分类既有商原创 2020-10-14 11:33:53 · 1125 阅读 · 0 评论 -
事件抽取与金融事件图谱构建 陈玉博 2018. 分享记录
学习视频来源####其他学习笔记介绍信息抽取技术:实体抽取、消歧、关系抽取、事件抽取事件抽取:现有kg主要以实体为核心,缺少事件知识事件和事物是n对n关系,人们以事件为单位来认知世界事件抽取与事件图谱的意义:丰富现有的知识图谱,支撑其他信息获取引擎语义搜索、事件监控、检测相关事件(孟晚舟、华为5G、外交部发言相关)、预警风险事件(关联交易、黑铁事件)、梳理历史事件(事件长链条)代表...原创 2020-03-17 11:12:26 · 1757 阅读 · 0 评论 -
事件抽取---2020.3 收集
Exploring pre-trained language models for event extraction and generationACL2019解决在事件抽取任务训练数据的不足。论文阅读笔记Document-level Framework for Chinese Financial Event ExtractEMNLP2019 金融领域文档级别事件抽取将文档级别的事件表...原创 2020-03-16 15:42:36 · 834 阅读 · 0 评论 -
什么是常识
从一个简单的问题引出,什么是知识,知识有哪些类?百度百科的解释知识也是人类在实践中认识客观世界(包括人类自身)的成果,它包括事实、信息的描述或在教育和实践中获得的技能。知识是人类从各个途径中获得的经过提升总结与凝练的系统的认识。从类型学看,知识可分为简单知识和复杂知识、独有知识和共有知识、具体知识和抽象知识、显性知识和隐性知识等。(隐形知识:难以表达的技能类知识,包括洞察力等的认识类知识...原创 2020-01-10 00:20:26 · 1135 阅读 · 0 评论 -
简单了解专家系统
1 专家系统定义知识工程之父费根鲍姆定义为:一种智能的计算机程序。这种程序使用知识与推理过程,求解那些需要杰出人物的专门知识才能求解的复杂问题。一般认为,专家系统就是应用于某一个专门领域 ,由知识工程师通过知识获取手段,将领域专家解决特定领域的知识,采用某种知识表示方法编辑或自动生成某种特定表示形式存放在知识库中;然后用户通过人机接口输入信息、数据或命令,运用推理机构控制知识库及整个系统,能...原创 2020-01-02 16:27:08 · 6177 阅读 · 0 评论 -
事理图谱资料小结1.0
事理图谱资料小结1.0有关论文和博客研究综述|事件抽取及推理(下)GGNN: GATED GRAPH SEQUENCE NEURAL NETWORKSEvent2Mind: Commonsense Inference on Events, Intents, and ReactionsIntegrating Order Information and Event Relation for...原创 2019-12-13 18:11:44 · 592 阅读 · 0 评论 -
领域知识图谱难点统计
对于领域知识图谱的构建,通常的几个步骤如下:知识建模、存储、抽取、融合、计算和应用。对应到每一个过程的难点有1)知识建模建立知识图谱的概念模式的过程,相当于关系数据库的表结构定义。a. 概念划分的合理性,如何描述知识体系及知识点之间的关联关系b. 属性定义方式,如何在冗余程度最低的条件下满足应用和可视化展现c. 事件、时序等复杂知识表示,通过匿名节点的方法还是边属性的方法来进行描述,...原创 2019-10-09 22:22:41 · 2416 阅读 · 0 评论 -
知识图谱 --- 面向非结构化数据的知识抽取 No.2 关系抽取
1 基于模板的关系抽取方法2 基于监督学习的关系抽取方法2.3 优缺点优点准确率高,标注数据越多越准确缺点标注数据成本太高不能扩展新的关系基于弱监督学习的关系抽取方法远程监督方法Bootstrapping方法...原创 2019-09-01 19:45:42 · 4925 阅读 · 0 评论 -
Neo4j --- 高效率的图遍历操作
为什么图数据库搜索关系速度会很快?1 Neo4j存储设计存储管理层的任务是 将属性图编码表示为在磁盘上存储的数据格式.虽然不同图数据库的具体存储方案各有差异, 但一般认为具有 "无索引邻接" 特性的图数据库才称为 原生图数据库.1.1 无索引邻接对于实现了"无索引邻接"的图数据库中, 每个节点 维护着 指向其邻接节点的 直接引用.==> 这相当于每个节点都可看作是...原创 2019-08-31 22:24:37 · 2716 阅读 · 0 评论 -
Neo4j --- windows系统安装和使用
1 安装前提jdk 1.8以上 neo4j windows社区版 下载地址https://neo4j.com/download/other-releases/选择windows社区2 windows配置配置系统环境变量更改服务器验证 修改neo4j.conf配置文件(在XX\neo4j-community-3.4.1\conf),取消验证机制,修改如下:dbms....原创 2019-08-31 00:15:37 · 497 阅读 · 0 评论 -
Neo4j --- 生成数据的3种方式
1.通过create实体和关系的方式这种方式可以在web、neo4j-shell中进行2.通过apoc.generate.ba的方式这种方式可以在web端进行3.下载三元组转换成node.csv,relationship.csv,通过neo4j-admin import的方式批量导入到neo4j中...原创 2019-08-28 19:28:13 · 1285 阅读 · 0 评论 -
cs224w-第1课:介绍图的结构
网络是描述交互实体的复杂系统的通用语言。主要有两类网络:(1)自然网络:由70+亿人组成的社会;由电子设备组成的通信系统;基因/蛋白质调节生命的相互作用;思绪下隐藏着的亿万级神经元联系…(2)信息网络信息/知识被组织和链接场景图:场景中的对象如何关联相似网络:获取连接相似点的数据有时候,这两种网络的区别是模糊的。不同类型的网络:问题来了:这些系统如何组织?它们的特性...原创 2019-12-26 11:27:54 · 2712 阅读 · 0 评论 -
cs224w-第3课:Motifs and Structral Rules in Network
子图/子网:能够表征和区分网络。比如节点数为3的有向图种类:Networks from the same domain have similar significance profiles。来自相同域的网络有相似的重要性配置文件Defining Motifs and graphlets 定义图案和图形Discovering structural roles and its applica...原创 2019-12-24 21:12:43 · 1199 阅读 · 0 评论 -
cs224w-第2课:网络属性和随机图模型 之 随机图模型
1 最简单的图模型Erdos-Renyi提出的随机图 random graphs,有两种形式Gnp和GnmG_{np}和G_{nm}Gnp和Gnm,在此只讨论 GnpG_{np}Gnp 形式的图模型。GnpG_{np}Gnp:由 nnn 个节点,节点之间以概率 ppp 生成关系的随机图。举个例子:它的属性值计算结果如下:属性计算公式Degree distri...原创 2019-12-19 19:52:25 · 787 阅读 · 1 评论 -
cs224w-第2课:网络属性和随机图模型 之 真实世界的网络属性
上一篇博客中提到了网络属性的定义和计算方式,这一篇我们根据定义计算出真实世界的网络属性值(以MSN为例)。1. MSN Messenger 1个月的活动数据数据量行为245M用户登录180M用户参与对话>1.3B对话次数>255B对话信息条数其中: M 代表 百万次,B 代表 十亿次以用户之间至少有一条信息交换构图,可得一幅有1...原创 2019-12-19 13:30:39 · 731 阅读 · 0 评论 -
cs224w-第2课:网络属性和随机图模型 之 网络属性的定义和计算方式
properties of network and random graph models1 网络属性属性数学表示计算公式Degree distributionP(k)P(k)P(k)P(k)=Nk/NP(k)=N_k/NP(k)=Nk/NPath lengthhhhClustering coefficientCCCConnected co...原创 2019-12-19 12:44:36 · 712 阅读 · 0 评论 -
推荐系统和搜索引擎的比较
比较推荐系统搜索引擎获取信息的方式不同被动;模糊主动;明确个性化程度高低服务特性持续服务 (“好”的推荐系统往往让用户停留更多的时间,带来的增量点击,推荐成功数,成交转化提升量等)快速满足*(“好”的搜索算法是需要让用户获取信息的效率更高、停留时间更短。)*特点(用户存在大量的需求是比较难用精炼的文字组织的:一方面用户不愿意,另一方面搜索对语义...原创 2020-03-04 11:49:58 · 1829 阅读 · 0 评论 -
图神经网络导读
人工智能的下一个拐点:图神经网络迎来快速爆发期原创 2020-01-07 09:52:03 · 408 阅读 · 0 评论 -
机器学习---基本概念
1 机器学习分为:监督学习,非监督学习区别:数据有没有标签。监督学习 : D =(X,y)X 代表样本的特征。特征:用一些信息来表达样本y 代表标签,如文本主题,情感类别等任务: 学习出 X -> y 的关系。模型选择依据, 关系线性与否等等很多问题都属于监督学习的范畴。 也是主要学习的重点。无监督学习: D = (X)任务: 寻找 X 中的特征或者规律。大量的样本,通过...原创 2019-09-12 01:03:06 · 204 阅读 · 0 评论 -
AI---是什么?可以做什么?
1 AI的项目简单介绍图像识别描述:给定图片,识别图片中有什么?算法:KNN、CNN…情感分析描述:判断文本包含的情感是正面、负面还是中性关键:文本如何表示成向量,文本清洗,文本预处理算法:Tf-idf、词向量,分类算法(LR、朴素贝叶斯,决策树、RNN…)金融风控描述:判断一个用户会不会发生逾期行为?关键:根据用户基本信息、行为信息来判断用户群体分析描述:...原创 2019-09-11 23:37:47 · 1428 阅读 · 0 评论 -
算法概述---过拟合和几种解决方法
1 过拟合问题什么是过拟合?一种扭曲的曲线,不停上下波动;另一种说法,算法具有高方差,然后模型太过庞大,变量太多千方百计的拟合训练集,导致无法泛化到新的样本中。泛化: 一个假设模型应用到新样本的能力什么是欠拟合?算法没有很好地拟合训练集;另一种说法,算法具有高偏差,就好像算法有一个很强的偏见。处于两者中间:刚好合适以线性回归举例(从左到右依次是欠拟合、刚好、过拟合):过拟合...原创 2019-09-03 00:38:41 · 5263 阅读 · 0 评论 -
SemEval初识(一)
SemEval2020 日程安排SemEval2020 TaskSemEval2020-Task4-常识-验证和解释SemEval2020-Task5-基线SemEval2020-Task6-deft_corpus原创 2020-02-17 15:48:49 · 1161 阅读 · 0 评论 -
ConceptNet 5.5: An Open Multilingual Graph of General Knowledge
2017 AAAI-17论文全文demo论文代码论文和笔记原创 2020-01-16 09:57:05 · 1088 阅读 · 0 评论 -
Cosmos QA:Machine reading comprehension with contextual commonsense reasoning
2019.09 -EMNLP 2019论文评测网站介绍Cosmos QA是一个35.6K问题的大规模数据集,需要基于常识的阅读理解,被表述为多项选择题。 它着重于阅读人们日常叙事的不同线条之间的界限,询问有关事件的可能原因或影响的问题,这些事件需要推理超出上下文的确切范围。目前在此数据集上模型最高准确率为 68.4%,相对于人类表现的94%。阅读理解的相关数据集SQuAD 201...原创 2020-01-15 18:31:29 · 1018 阅读 · 0 评论 -
CommonsenseQA:A question answering challenge targeting commonsense knowledge
2019.03 -NAACL 2019CommonsenseQA 任务排名结果数据众包连接及demo训练集测试集论文地址论文解读1论文解读2技术分享丨ALBERT在CommonsenseQA方向的应用任务关键CommonsenseQA任务的关键是让模型学到更多的先验知识,这样在一些给定相关文件或上下文的问题(只需要很少的背景知识)上,模型获得的先验知识越多,给出正确预测答案...原创 2020-01-15 15:47:07 · 1555 阅读 · 0 评论 -
From System 1 Deep Learning to System 2 Deep Learning
论文报告地址唐杰教授的解读Yoshua的第一个观点人的认知系统包含两个子系统:system1直觉系统,主要负责快速、无意识、非语言的认知,这是目前深度学习主要做的事情;system2是逻辑分析系统,是有意识的、带逻辑的、规划、推理以及可以语言表达的系统,这是未来深度学习需要着重考虑的。《思考,快与慢》如何用深度学习来实现system2yoshua认为,对于计算机来说,最关键的是处理...原创 2020-01-14 15:04:49 · 1721 阅读 · 0 评论 -
PIQA:Reasoning about physical commonsense in natural language
2019.11 AAAI 2020论文数据集在本文中,我们介绍了物理常识推理的任务以及相应的基准数据集“物理交互:问答”或“ PIQA”。 尽管人们发现数据集很容易(准确度达到95%),但大型的预训练模型仍然很困难(〜77%)。 我们提供有关现有模型缺乏的知识维度的分析,这为将来的研究提供了重要的机会。在孩子学习语言之前,他们开始根据周围物体的物理特性来形成类别和概念。这个模型的世界随...原创 2020-01-13 16:44:26 · 2031 阅读 · 0 评论 -
WIQA:A dataset for 'what if...' reasoning over procedural text
2019.09 EMNLP 2019论文数据集第一个大规模测试程序文本推理的大型数据集。举例:给出一个关于海滩侵蚀的段落,暴风雨的天气会导致或多或少的侵蚀(或没有影响)吗?鉴于相关段落,任务是回答问题。WIQA包含三种问题:对本段中提到的步骤的干扰;需要常识对的外部(区间外)扰动;无关(无影响)扰动。将数据集作为对社区的公开挑战提出。程序文本在语言中很常见,但由于它描述了一个动...原创 2020-01-13 16:40:25 · 436 阅读 · 0 评论 -
COMET:Commonsense Transformers for Automatic Knowledge Graph Construction
2019.06 - ACL 2019 COMET 自动常识知识库构建论文笔记论文数据、demo论文代码概览利用ATOMIC训练GPT模型,该GPT模型又反过来生成了许多全新的且合理的知识,达到了图谱补全的效果。(Allen实验室:自动常识知识库构建)作者提出Commonsense Transformers(COMET)生成模型,主体框架是Transformer语言模型。(在问答...原创 2020-01-10 17:26:52 · 2420 阅读 · 0 评论 -
Social IQA:Commonsense Reasoning about Social Interactions
EMNLP 2019.9 - Social IQA论文及数据:https://maartensap.github.io/social-iqa/参考代码:https://github.com/huggingface/transformers概览介绍了Social IQA,第一个面向社会情况常识推理的大规模基准,包含38000个覆盖日常情形中社交情感和智慧的多选题。(涵盖了关于在情境中描述...原创 2020-01-10 17:19:26 · 922 阅读 · 1 评论 -
A systematic comparison of smoothing techniques for sentence-level BLEU
句子级BLEU指标平滑技术的系统比较。BLEU计算方式参见Bleu浅析paper概览BLEU是n-gram精度的几何平均值,最初的设计是为文档级设计的,因此不需要平滑处理,因为某些句子至少有4个匹配项。文章描述了7种平滑技术,使得平滑后的BLEU在句子级评估中表现效果更好。n-gram记为n,取值为1…N,N通常选择为4.下面以smoothing1为例进行介绍平滑技术。mnm_nm...原创 2020-01-10 11:30:30 · 327 阅读 · 0 评论 -
ATOMIC:An Atlas of Machine Commonsense for If-Then Reasoning
华盛顿大学 AAAI 2019.2 ATOMIC简单介绍包含87万条推理常识的知识图谱,和基于本体论分类条目的kg相比,这个知识库专注于“如果…那么…”关系的知识。9种类型的因果联系来区分原因-效果、主体-主题、自愿-非自愿、行动-心理状态。通过生成式训练,模型可以从kg中获取简单的常识推理能力。构建这个常识kg的动机人类在观察事件的一个小片段时,能够轻松地推理出事件的前因后果。(图...原创 2020-01-06 20:20:20 · 2230 阅读 · 0 评论 -
Event2Mind: Commonsense Inference on Events, Intents, and Reactions
Event2Mind:事件、意图和反应的常识推理华盛顿大学 ACL2018新的常识推理任务:给定一个以简短的自由文本(比如:X在早上喝咖啡)描述的事件,系统推理事件参与者的可能依图(比如:X想保持清醒)和相对反应(比如:X感觉清醒了)构建了一个包含25000个事件短语的新的众包语料库,这些事件短语涵盖了各种各样的日常事件和情景。实验证明:神经编码-解码器模型能够成功地合成未知事件的嵌入表示...原创 2020-01-02 17:23:28 · 411 阅读 · 0 评论 -
CAUSALITY FOR MACHINE LEARNING
论文名称:CAUSALITY FOR MACHINE LEARNING作者:马克斯·普朗克智能系统中心主任Bernhard Schlkopf时间:2019.11.24论文地址From:将因果思维融入机器学习,实现信息处理的自动化...原创 2020-01-02 17:32:42 · 1508 阅读 · 0 评论