板式热交换器强度

本文探讨了板式热交换器中压板厚度的传统计算方法问题,指出GB/T150-2011中的保守安全系数。通过实例分析,提出针对板换特点的改进计算方法,旨在降低材料浪费并提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、不同标准中对于板换压板的规定

(1) NB/T 47004.1-2017《板式热交换器 第1部分:可拆卸板式热交换器》6.3压紧板6.3.3条“压紧板应有足够的刚性,以保证板式热交换器在正常操作状态不发生泄漏”。
(2) NB/T 47004-2009《板式热交换器》5.3紧板5.3.3条“压紧板要有足够的刚性,以保证板式热交换器在正常操作状态不发生泄漏”。
(3) CB/T 1036-2008《船用板式冷却器》4.5.3压紧板描述为:冷却器压紧板的厚度值按下表规定。
在这里插入图片描述
(4) GB 16409-1996《板式换热器》5.3压紧板描述为:“压紧板要有足够的刚性,压紧板厚度的选取按下表”。
在这里插入图片描述
(5) JB/T 8701-1998《制冷用板式换热器》6.2.3中与GB/T 150-2011《压力容器》 5.9平盖的计算公式相同;
(6) API662《炼油厂通用板式换热器》、ISO 15547《石油天然气用板式换热器》中均无关于压紧板厚度的计算方法及规定。
2、目前的习惯做法

目前业内都是参考GB/T 150.3-2011《压力容器》5.9平盖计算方法来计算压板厚度。
3、目前的习惯做法存在问题

通过多年使用及试验情况来看,按GB/T150.3-2011《压力容器》平盖计算方法得到的压板厚度过于保守,浪费材料。
4、改进的计算方法

GB/T 150-2011《压力容器》是以第一强度理论为依据,第一强度理论即最大主应力理论,最先由上世纪30年代ASME规范所采用,用于容器设计,它主要考虑材料的脆性断裂,对于塑性、韧性较好的材料存在工程上的不合理因素。在平盖计算中考虑平盖的受力为一次薄膜应力+弯曲应力。同时针对压力容器的行业特性规定了各种材料的安全系数,通过安全系数来得到材料的许用应力,最终控制平盖的应力值不大于其许用应力。
在这里插入图片描述
如上所示,在GB/T 150-2011《压力容器》中对于板换压板常用材料碳钢板、高合金钢板取安全系数n=2.7。
对于板换而言,其使用场合、失效机理、安全等级均没有压力容器苛刻,失效模式也不尽相同,随着我国冶炼技术的不断提高,材料的性能也在不断提高,因此GB/T 150-2011中规定的2.7的安全系数对于板换而言偏高。我们可以通过降低安全系数来提高材料的许用应力,从而达到降低压板厚度的目的。
以某公司某大型板换(单板面积>2.5m2),设计压力2.5MPa,设计温度150℃为例。
在这里插入图片描述
对于固定压板120mm,活动压板厚度100mm,用ANSYS17.0依据ASME第Ⅷ-2卷有限元分析法进行分析,结果如下:
在这里插入图片描述

基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

制冷技术咨询与服务

您的鼓励是我创作的最大动力!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值