冷水机运行各项数据参考

本文详细解释了制冷系统中的关键参数,如压缩机的排气温度、排气过热度、满载电流、电流限制、油温控制、冷凝器与蒸发器的压力和温度差等,以及R134a机组在不同工况下的标准参数。这些数据对于设备运行效率和维护至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、压缩机出口温度:制冷剂在压缩机内被压缩后,从压缩机排出时的温度,也称排气温度。排气温度过高会产生增加压缩机磨损、使润滑油变质等后果。排气温度还是计算排气过热度的重要条件。使用R134a制冷剂的机组排气温度应低于104℃,使用R22制冷剂的机组排气温度应低于120℃。

2、排气过热度:压缩机出口制冷剂温度和实际冷凝压力对应的饱和温度之间的温差。所谓的过热度指,制冷剂目前的实际温度比实际压力所对应的饱和温度高出几度。这一数值可监测制冷剂充注量是否合适。

3、满载电流:机组实际运行电流与铭牌标注的额度电流的比值,超过设定值时屏幕左上角显示黄色字体“马达高电流限制”,超过105%机组会因马达过电流保护停机。该值反应了机组的负荷大小,相同冷冻水进出水温度下,冷却水温度低则该值小。该值长期处于设定值,且冷冻水温度下降缓慢或不下降,是需要调高设定值或增开机组的标识。当需要限制机组制冷量时可调低该值。

4、电流限制设定值:限制机组运行电流最大不超过额定电流的百分之多少,在15%-100%间可调,可通过限制该电流值来限制(降低)机组制冷量。

5、油槽温度(油温):油槽或油分离器内压缩机润滑油的温度。保持适当的油温可以减少油里溶解的制冷剂。该值在停机时应高于43℃,否则机组会显示“油温过低”并无法启动。油温高于82℃机组会显示“油温过高”并停机或无法启动。水冷式油冷却机组(制冰机)应特别关注该温度。压缩机运转时一般情况维持在55℃-65℃,如有增高趋势,虽未达保护值也应采取措施(参见油温高故障排除)

6、油压:油的压力要高于压缩机排气压力润滑油才能在制冷系统内循环,此处的油压更确切的称谓是“油压差”,指油压与排气压力的差。离心机组在运行时目标油压差为241KPa,变频油泵会调整电机转速来尽量稳定油压差在目标值。

7、冷却水出水温度:冷却水流进机组时的水温。

8、冷却水返回温度:冷却水流出机组时的温度。冷冻水进出水温差标准为5℃,此时流量适当。温差大则流量小,温差小则流量大。

9、冷凝器压力:冷凝器内制冷剂的压力,也称高压压力。由压力传感器测得。该值超过标准机组会高压保护停机,各工况和不同制冷剂高压保护停机值见后面表格。

10、冷凝器饱和温度:上述冷凝器压力对应的饱和温度值,是计算值,非直接测量值。

11、冷冻水进水温度:冷冻水流进机组时的温度。

12、冷冻水返回温度:冷冻水流出机组时的温度。冷却水进出水温差标准为5℃,此时流量适当。温差大则流量小,温差小则流量大。

13、冷凝器小温差:冷凝器饱和温度与冷却水出水温度的差。在冷却水进出水温差为5℃时,该值反应冷凝器换热效果,大于3℃则换效果差,冷凝器需清洗。

14、蒸发器压力:蒸发器内制冷剂的压力,也称低压压力。由压力传感器测得。该值低于标准机组会低压保护停机,各工况和不同制冷剂低压保护停机值见后面表格。

15、蒸发器饱和温度:上述冷凝器压力对应的饱和温度值,是计算值,非直接测量值。

16、蒸发器小温差:蒸发器饱和温度与冷冻水出水温度的差。在冷冻水进出水温差为5℃时,该值反应蒸发器换热效果和制冷剂充注是否适量,判断制冷剂充注量时还需参考排气过热度。不同工况和制冷剂该值见后面表格。

17、过冷度:制冷剂在过冷器中进一步冷却,温度低于饱和温度.就成为过冷液体。饱和温度和过冷温度之差称为过冷度。适当的过冷度说明机组冷却水温度适当、冷凝器换热良好、制冷剂充注适量等,对提高制冷系数是很有益的。

18、变频器内部环境温度:变频柜内的环境温度

19、变频原件温度:变频器内主要发热元件IGBT表面的温度。这两个温度都受变频器冷却液温度影响。而冷却液又被冷却水冷却。所以,冷却水的温度、流量、与冷却液的热交换效果直接影响上述三温度。

R134a机组参数标准参考:

空调工况
排气过热度范围 6.67~ 10℃
蒸发器小温差范围 <3℃*
低压(吸气)压力保护值 198KPa
制冰工况
排气过热度范围 13.3~ 20℃
蒸发器小温差范围 <4.4℃*
低压(吸气)压力保护值 172KPa
液体过冷度范围 3.33~ 5.6℃
冷凝器小温差范围 ❤️.0℃*
高压(冷凝)压力保护值 1120KPa
高油温保护值 82.2℃
电机过载保护 机组额定电流的105%

内容概要:本文探讨了在微电网优化中如何处理风光能源的不确定性,特别是通过引入机会约束概率序列的方法。首先介绍了风光能源的随机性波动性带来的挑战,然后详细解释了机会约束的概念,即在一定概率平下放松约束条件,从而提高模型灵活性。接着讨论了概率序列的应用,它通过对历史数据分析生成多个可能的风光发电场景及其概率,以此为基础构建优化模型的目标函数约束条件。文中提供了具体的Matlab代码示例,演示了如何利用CPLEX求解器解决此类优化问题,并强调了参数选择、模型构建、约束添加以及求解过程中应注意的技术细节。此外,还提到了一些实用技巧,如通过调整MIP gap提升求解效率,使用K-means聚类减少场景数量以降低计算复杂度等。 适合人群:从事电力系统研究、微电网设计与运营的专业人士,尤其是那些对风光不确定性建模感兴趣的研究者技术人员。 使用场景及目标:适用于需要评估优化含有大量间歇性可再生能源接入的微电网系统,旨在提高系统的经济性稳定性,确保在面对风光出力波动时仍能维持正常运作。 其他说明:文中提到的方法不仅有助于学术研究,也可应用于实际工程项目中,帮助工程师们制定更为稳健的微电网调度计划。同时,文中提供的代码片段可供读者参考并应用于类似的问题情境中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

制冷技术咨询与服务

您的鼓励是我创作的最大动力!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值