solr4.8单机部署(solr4.8+tomcat7)

本文详细介绍如何在Windows环境下进行Solr单机部署的过程。包括所需软件版本、配置步骤及解决部署过程中出现的SLF4J日志异常问题。

所需软件:solr4.8.1、Tomcat7

下载完相应软件后开始单机部署(windows下)

  1. 在F盘根目录创建solr文件夹,并解压solr4.8和tomcat7到该文件夹
  2. 在F盘根目录创建solrhome文件夹,将F:\solr\solr-4.8.1\example\solr下的所有文件复制到solrhome文件夹中
  3. 将F:\solr\solr-4.8.1\dist下的solr-4.8.1.war复制到tomcat7的webapps下并更名为solr.war
  4. 在F:\solr\apache-tomcat-7.0.53\conf\Catalina\localhost下新建solr.xml,文件内容如下:
  5. <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

    [html]  view plain  copy
      在CODE上查看代码片 派生到我的代码片
    1. <Context docBase="F:\solr\apache-tomcat-7.0.53\webapps\solr.war" debug="0" crossContext="true" >  
    2.  <Environment name="solr/home" type="java.lang.String" value="F:\solr\solrhome" override="true" />  
    3. </Context>  

  6. 然后启动tomcat,然而并不能启动成功,抛出了异常查看日志文件:
  7. [java]  view plain  copy
      在CODE上查看代码片 派生到我的代码片
    1. 严重: Exception starting filter SolrRequestFilter  
    2. java.lang.NoClassDefFoundError: Failed to initialize Apache Solr: Could not find necessary SLF4j logging jars. If using Jetty, the SLF4j logging jars need to go in the jetty lib/ext directory. For other containers, the corresponding directory should be used. For more information, see: http://wiki.apache.org/solr/SolrLogging  
    3.     at org.apache.solr.servlet.CheckLoggingConfiguration.check(CheckLoggingConfiguration.java:28)  
    4.     at org.apache.solr.servlet.BaseSolrFilter.<clinit>(BaseSolrFilter.java:31)  
    5.     at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)  
    6.     at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)  
    7.     at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)  
    8.     at java.lang.reflect.Constructor.newInstance(Constructor.java:526)  
    9.     at java.lang.Class.newInstance(Class.java:374)  
  8. 很明显:: Could not find necessary SLF4j logging jars  缺少SLF4J.jar
  9. 最后将F:\solr\solr-4.8.1\example\lib\ext下的lib复制到F:\solr\apache-tomcat-7.0.53\webapps\solr\WEB-INF\lib下重启tomcat即可
  10. 访问http://localhost:8080/solr
内容概要:本文详细介绍了一个基于黏菌优化算法(SMA)优化的Transformer-LSTM组合模型在多变量回归预测中的完整项目实例。项目通过融合Transformer的全局特征提取能力与LSTM的局部时序建模优势,构建层次化混合模型,并引入SMA算法实现超参数自动寻优,提升模型性能与泛化能力。项目涵盖数据预处理、模型设计、训练优化、结果评估、GUI可视化界面开发及工程化部署全流程,配套完整代码与目录结构设计,支持端到端自动化建模与跨平台应用。; 适合人群:具备一定机器学习和深度学习基础,熟悉Python编程与PyTorch框架,从事数据科学、人工智能研发或工程落地的相关技术人员,尤其是工作1-3年希望提升模型自动化与实战能力的研发人员。; 使用场景及目标:①应用于智能制造、金融风控、智慧医疗、能源管理、气象预测、智能交通等多变量时间序列预测场景;②掌握Transformer与LSTM融合建模方法;③学习SMA等群体智能算法在深度学习超参数优化中的实际应用;④实现从数据处理到模型部署的全流程自动化开发。; 阅读建议:建议结合文档中的代码示例与GUI实现部分动手实践,重点关注模型架构设计、SMA优化机制和训练流程细节,配合可视化分析深入理解模型行为。同时可扩展尝试不同数据集和优化算法,提升对复杂时序预测任务的综合把控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值