题目描述
- 给出一个包括N个元素的整数数组A,包括A本身在内,共有 (N+1)*N / 2个非空子段。
- 例如:1 3 2的子段为{1} {3} {2} {1 3} {3 2} {1 3 2}。
- 在这些子段中,如果最大值同最小值的差异不超过K,则认为这是一个合格的子段。
- 给出数组A和K,求有多少符合条件的子段。
- 例如:3 5 7 6 3,K = 2,符合条件的子段包括:{3} {5} {7} {6} {3} {3 5} {5 7} {7 6} {5 7 6},共9个。
输入
- 第1行:2个数N, K(1 <= N <= 50000, 0 <= K <= 10^9)
- 第2 ~ N+1行:每行1个数,对应数组的元素Ai(0 <= A[i] <= 10^9)
输出
输入样例
5 2
3
5
7
6
2
输出样例
9
题解
单调队列
O
(
n
)
O(n)
O(n)
- 计算以a[l]开头的最长连续序列并求和(0 <= l < n)
- 若以a[i]开头的连续序列在符合题意的条件下最长可拓展至a[k]
- 那么以a[i + 1]开头的连续序列至少可拓展至a[k]
- 假如a[i]已经拓展至a[n - 1]那么a[i + 1] ~ a[n - 1]皆可拓展至a[n - 1]
- 本题拓展和a[l]和删除a[l - 1]过程可采用单调队列实现
- 注:用公式计算一个很大的数据时考虑一下范围
C++ 代码
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int a[N],qx[N],qn[N];
int hx,tx = -1,hn,tn = -1,res;
int main() {
int n,k;
scanf("%d%d",&n,&k);
for(int i = 0; i < n; i++) {
scanf("%d",&a[i]);
}
int l = 0,r = 0;
while(r < n) {
int d = a[r],x = a[r];
if(hx <= tx) {
d = max(a[qx[hx]],d);
}
if(hn <= tn) {
x = min(a[qn[hn]],x);
}
//d - x <= k用于判断a[r]插入后以a[l]开头的连续序列是否符合题意
if(d - x <= k) {
//符合题意直接添加并更新单调队列
while(hx <= tx && a[r] >= a[qx[tx]]) {
tx--;
}
while(hn <= tn && a[r] <= a[qn[tn]]) {
tn--;
}
qx[++tx] = qn[++tn] = r;
r++;
}else {
//不符合题意那么更新答案和单调队列l后移
res += r - l;
l++;
if(qx[hx] < l) {
hx++;
}
if(qn[hn] < l) {
hn++;
}
}
}
//此时a[l] ~ a[n - 1]已符合题意,a[i] ~ a[n - 1]也符合题意(l <= i <= n - 1)
long long t = r - l;
//r - l范围1e9因此这儿用long long去存一下
res += (int)(t * (t + 1) / 2);
printf("%d\n",res);
return 0;
}