背包问题

1、0 1背包问题

题目:有N件物品和一个容量为V的背包。第i件物品的费用是w[i],价值是p[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本思路:这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。

        这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f [i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

       注意f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[i][v-1],这样就可以保证f[N] [V]就是最后的答案。至于为什么这样就可以,由你自己来体会了。

解法一:二维动态规划

import java.util.Scanner;
public class Main{
    /**
     * @param N 物品数量
     * @param V 背包所能容纳的体积
     * @param w 物品的体积集合
     * @param p 物品的价值集合
     */
    public static int process(int N, int V, int[] w, int[] p) {
        int[][] dp = new int[N + 1][V + 1];
        for (int i = 1; i <= N; i++) {
            for (int j = 1; j <= V; j++) {
                dp[i][j] = dp[i - 1][j];
                if (w[i - 1] <= j) {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - w[i - 1]] + p[i - 1]);
                }
            }
        }
        return dp[N][V];
    }


    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        
        int N = sc.nextInt();
        int V = sc.nextInt();
        
        int[] w = new int[N];
        int[] p = new int[N];
        for(int i=0;i<N;i++){
            w[i] = sc.nextInt();
            p[i] = sc.nextInt();
        }
        int res = process(N,V,w,p);
        System.out.println(res);
    }
}

优化后:

    public static int knapsack(int N, int V, int[] w, int[] p) {
        int[] dp = new int[V + 1];
        for (int i = 1; i <= N; i++) {
            for (int j = V; j >= w[i-1]; j--) {
                    dp[j] = Math.max(dp[j], dp[j - w[i - 1]] + p[i - 1]);
            }
        }
        return dp[V];
    }

2、完全背包问题

题目:有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本思路:这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<= v}。这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间则不是常数了,求解状态f[i][v]的时间是O(v/c[i]),总的复杂度是超过O(VN)的。

 方法一:

     * 注意这里当考虑放入一个物品 i 时应当考虑还可能继续放入 i,
     * 因此这里是dp[i][j-w[i]]+p[i], 而不是dp[i-1][j-w[i]]+p[i]。
import java.util.Scanner;
public class Main{
    public static int process(int N, int V, int[] w, int[] p) {
        int[][] dp = new int[N + 1][V + 1];
        for (int i = 1; i <= N; i++) {
            for (int j = 1; j <= V; j++) {
                if (w[i - 1] > j) {
                    dp[i][j] = dp[i - 1][j];
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - w[i - 1]] + p[i - 1]);
                }
            }
        }
        return dp[N][V];
    }
    public static void main(String[] args){
        Scanner sc = new Scanner(System.i
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值