笔试题14——背包问题(01、完全、多重)

01背包
有N件物品和一个容量为M的背包。第i件物品的费用(即体积)是w[i],价值是 v[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
状态转移方程: f[j] = max{f[j] ,f[j - w[i]] + v[i]}
核心代码如下:

#include <iostream>
using namespace std;

long f[30000];
int m,n,v[1000],w[1000];

int main()
{
	memset(f, 0, sizeof(f)); //数组初始化

	cin >> n >> m; //输入n件物品,容量为m
	for(int i = 1; i <= n; i++)
		cin >> w[i] >> v[i];  //数组初始化

	for(int i = 1; i <= n; i++)
		for(int j = m; j >= w[i]; j--)  //j从后往前遍历,这是要保证第i次循环中的状态f[i][v]是由上一次状态f[i-1][v-w[i]]递推而来
			/*换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果	f[i-1][m-w[i]]。*/
			f[j] = max(f[j], f[j - w[i]] + v[i]);  //状态转移方程

	cout << f[m] << endl;

	return 0;
}

完全背包
有N件物品和一个容量为M的背包。第i件物品的费用(即体积)是w[i],价值是 v[i]。其中每一件物品都可以在空间条件满足(包放的下)的条件下无限放,求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
状态转移方程也是: f[j] = max{f[j] ,f[j - w[i]] + v[i]}
核心代码如下:

#include <iostream>

using namespace std;

long f[30000];
int m,n,v[1000],w[1000];

int main()
{
	memset(f, 0, sizeof(f)); //数组初始化

	cin >> n >> m; //输入n件物品,容量为m

	for(int i = 1; i <= n; i++)
		cin >> w[i] >> v[i];  //数组初始化

	for(int i = 1; i <= n; i++)
		for(int j = w[i]; j <= m; j++)  //j从前往后遍历
			//完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][m-w[i]],所以就可以并且必须采用 k = w[i] … M (从 w[i] 开始表示起码要占用 w[i] 的空间)的顺序循环。
			//完全背包的每一项更新要用到前边的更新后的值,所以要从小到大遍历,这样计算f[i,j]时,保证j-w[i]的位置上是更新后的f[i, j - w[i]]而非f[i-1, j - w[i]]。
			f[j] = max(f[j], f[j - w[i]] + v[i]);  //状态转移方程

	cout << f[m] << endl;

	return 0;
}

多重背包
有N种物品和一个容量为M的背包。第i种物品最多有num[i]件可用,每件费用是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
状态转移方程: f[j] = max{ f[j] ,f[j - k * w[i]] + k * v[i] } (k表示这种物品放多少次 1 <= n <= num[i])
核心代码如下:

#include <iostream>
using namespace std;

int f[10000],w[1000],v[1000],num[1000];
int m,n;

int main()
{
	cin >> n >> m;
	for(int i = 1; i <= n; i++)
		cin >> w[i] >> v[i] >> num[i];

	for(int i = 1; i <= n; i++)
		for(int j = m; j >= 0; j--)  //j从容量m往容量为0遍历
			for(int k = 0; k <= num[i]; k++){  //枚举第i种物品放多少件
				if(j >= k * w[i])  //判断能不能放的下k个第i种物品
					f[j] = max(f[j], f[j - k * w[i]] + k * v[i]);  //状态转移方程
			}

	cout << f[m] <<endl;
	
	return 0;
} 

参考自大佬:https://blog.csdn.net/c_uizrp_dzjopkl/article/details/83692680

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值