01背包
有N件物品和一个容量为M的背包。第i件物品的费用(即体积)是w[i],价值是 v[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
状态转移方程: f[j] = max{f[j] ,f[j - w[i]] + v[i]}
核心代码如下:
#include <iostream>
using namespace std;
long f[30000];
int m,n,v[1000],w[1000];
int main()
{
memset(f, 0, sizeof(f)); //数组初始化
cin >> n >> m; //输入n件物品,容量为m
for(int i = 1; i <= n; i++)
cin >> w[i] >> v[i]; //数组初始化
for(int i = 1; i <= n; i++)
for(int j = m; j >= w[i]; j--) //j从后往前遍历,这是要保证第i次循环中的状态f[i][v]是由上一次状态f[i-1][v-w[i]]递推而来
/*换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果 f[i-1][m-w[i]]。*/
f[j] = max(f[j], f[j - w[i]] + v[i]); //状态转移方程
cout << f[m] << endl;
return 0;
}
完全背包
有N件物品和一个容量为M的背包。第i件物品的费用(即体积)是w[i],价值是 v[i]。其中每一件物品都可以在空间条件满足(包放的下)的条件下无限放,求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
状态转移方程也是: f[j] = max{f[j] ,f[j - w[i]] + v[i]}
核心代码如下:
#include <iostream>
using namespace std;
long f[30000];
int m,n,v[1000],w[1000];
int main()
{
memset(f, 0, sizeof(f)); //数组初始化
cin >> n >> m; //输入n件物品,容量为m
for(int i = 1; i <= n; i++)
cin >> w[i] >> v[i]; //数组初始化
for(int i = 1; i <= n; i++)
for(int j = w[i]; j <= m; j++) //j从前往后遍历
//完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][m-w[i]],所以就可以并且必须采用 k = w[i] … M (从 w[i] 开始表示起码要占用 w[i] 的空间)的顺序循环。
//完全背包的每一项更新要用到前边的更新后的值,所以要从小到大遍历,这样计算f[i,j]时,保证j-w[i]的位置上是更新后的f[i, j - w[i]]而非f[i-1, j - w[i]]。
f[j] = max(f[j], f[j - w[i]] + v[i]); //状态转移方程
cout << f[m] << endl;
return 0;
}
多重背包
有N种物品和一个容量为M的背包。第i种物品最多有num[i]件可用,每件费用是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
状态转移方程: f[j] = max{ f[j] ,f[j - k * w[i]] + k * v[i] } (k表示这种物品放多少次 1 <= n <= num[i])
核心代码如下:
#include <iostream>
using namespace std;
int f[10000],w[1000],v[1000],num[1000];
int m,n;
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i++)
cin >> w[i] >> v[i] >> num[i];
for(int i = 1; i <= n; i++)
for(int j = m; j >= 0; j--) //j从容量m往容量为0遍历
for(int k = 0; k <= num[i]; k++){ //枚举第i种物品放多少件
if(j >= k * w[i]) //判断能不能放的下k个第i种物品
f[j] = max(f[j], f[j - k * w[i]] + k * v[i]); //状态转移方程
}
cout << f[m] <<endl;
return 0;
}
参考自大佬:https://blog.csdn.net/c_uizrp_dzjopkl/article/details/83692680