93.复原IP地址
思路:要建立一个判断子字符串是否合法的函数,判断多种不合法的情况。在回溯函数中,参数除了s,和startindex还需要一个pointNum来记录句点的数量,当句点的数量等于3时,判断最后一个子串是否合法,如果合法就将s输入到result中,本题都是在字符串s的基础上加句点,没有生成新的字符串。如果s的长度小于4或者大于12,直接return result,剪枝。
class Solution {
public:
vector<string> result;
bool isValid(string &s,int start,int end)
{
if(start>end)
{
return false;
}
if(s[start]=='0'&&start!=end)//s不等于字符的'0'
{
return false;
}
int num=0;
for(int i =start;i<=end;i++)
{
num= num*10+s[i]-'0';
if(num>255)
{
return false;
}
}
return true;
}
void backtracking(string &s,int startindex,int pointNum)
{
//终止条件,句点数为3,且最后一段合法
if(pointNum==3)
{
if(isValid(s,startindex,s.size()-1))
{
result.push_back(s);
}
return;
}
for(int i =startindex;i<s.size();i++)
{
if(isValid(s,startindex,i))
{
s.insert(s.begin()+i+1,'.');
pointNum++;
backtracking(s,i+2,pointNum);
s.erase(s.begin()+i+1);
pointNum--;
}
else
{
break;
}
}
}
vector<string> restoreIpAddresses(string s) {
result.clear();
if(s.size()<4||s.size()>12)
{
return result;
}
backtracking(s,0,0);
return result;
}
};
78.子集
思路:与组合问题、分割问题类似,从整数数组中找到互不相同的不重复子集。
在回溯函数中,先result.push_back(path),先将子集的元素输入进result,终止条件就是当startindex==nums.size()时返回,在单层逻辑中找寻满足条件的不重复子集。
class Solution {
public:
vector<int> path;
vector<vector<int>> result;
void backtracking(vector<int>& nums,int startindex)
{
result.push_back(path);
if(startindex==nums.size())
{
return;
}
for(int i =startindex;i<nums.size();i++)
{
path.push_back(nums[i]);
backtracking(nums,i+1);
path.pop_back();
}
}
vector<vector<int>> subsets(vector<int>& nums) {
path.clear();
result.clear();
backtracking(nums,0);
return result;
}
};
90.子集II
思路:子集II相比于上一题,整数数组中包含重复元素,但子集不能包含重复子集。这个题跟之前做过的一道题思路相像,需要先对nums排序,然后利用used判断继续生成的子集是否为重复子集,如果是重复的直接continue。
class Solution {
public:
vector<int> path;
vector<vector<int>> result;
void backtracking(vector<int>&nums,int startindex,vector<bool> used)
{
result.push_back(path);
if(startindex==nums.size())
{
return;
}
for(int i =startindex;i<nums.size();i++)
{
if(i>0 && nums[i]==nums[i-1] && used[i-1] == false)
{
continue;
}
path.push_back(nums[i]);
used[i] = true;
backtracking(nums,i+1,used);
used[i] = false;
path.pop_back();
}
}
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
path.clear();
result.clear();
vector<bool> used(nums.size(),false);
sort(nums.begin(),nums.end());
backtracking(nums,0,used);
return result;
}
};
收获:
处理子集问题与组合和分割问题不同点在于,在回溯函数内先result.push_back(path),先把子集加入结果集。因为需要在每一个节点都收获结果,而组合和分割问题只需要在叶子节点收获结果。