代码随想录算法训练营第五十七天|LeetCode647 回文子串 、LeetCode516 最长回文子序列

647.回文子串

思路:确定dp数组及其下标含义,dp[i][j]表示以s[i]开头s[j]结尾的字符串是否为回文串。递推公式为if(s[i]==s[j]),判断j和i的位置关系 j==i或者j==i+1,dp[i][j] = true; 如果j>i+1且dp[i+1][j-1] = true,dp[i][j] = true;初始化,因为循环中能判断i=j为true的情况,所以一开始所有元素都初始化为false,遍历顺序由于dp[i][j]由左下推得,i从大到小,j从小到大。打印dp数组,可以用于debug。

class Solution {
public:
    int countSubstrings(string s) {
        //定义dp数组及其下标含义 dp[i][j]代表以s[i]开头s[j]结尾的子串是否是回文子串 bool
        //递推公式 if(s[i]==s[j]) j>=i 分三种情况 
        //j=i dp[i][j] =true;
        //j=i+1 dp[i][j] = true;
        //j>i && dp[i+1][j-1] =true   dp[i][j] = true;
        int size = s.size();
        vector<vector<bool>> dp(size,vector<bool> (size,false));
        int count=0;
        for(int i =size-1;i>=0;i--)
        {
            for(int j =i;j<size;j++)
            {
                if(s[i]==s[j])
                {
                    if(j==i||j==i+1)
                    {
                        dp[i][j] = true;
                        count++;
                    }
                    else if(j>i && dp[i+1][j-1]==true)
                    {
                        dp[i][j] = true;
                        count++;
                    }
                }
            }
        }
        return count;
    }
};

516.最长回文子序列

思路:确定dp数组及其下标含义,dp[i][j]表示以s[i]开头s[j]结尾的最长回文子序列长度。递推公式:if(s[i] == s[j])  dp[i][j] = dp[i+1][j-1]+2。否则 考虑放入s[i]或者s[j],dp[i][j-1], dp[i+1][j] 看他们俩谁更大,dp[i][j]  = max (dp[i][j-1],dp[i+1][j]). 初始化,dp[i][i] =1.遍历顺序i从大到小,j从小到大,打印dp数组,可以用于debug。

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        //定义dp[i][j]为以s[i]为开头s[j]为结尾的回文子序列长度
        //递推公式 if(s[i]==s[j]) dp[i][j] = d[i+1][j-1]+2;
        //else dp[i][j] = max(max(dp[i][j-1],dp[i+1][j]),dp[i-1][j-1])
        int size = s.size();
        vector<vector<int>> dp(size,vector<int>(size,0));
        int result=0;
        if(size==1)
        {
            return 1;
        }
        for(int i = 0;i<size;i++)
        {
            dp[i][i] = 1;
        }
        for(int i = size-1;i>=0;i--)
        {
            for(int j =i+1;j<size;j++)
            {
                if(s[i]==s[j])
                {
                    dp[i][j] =dp[i+1][j-1]+2; 
                    result = result>dp[i][j]?result:dp[i][j];
                }
                else if(s[i]!=s[j]&&i<size-1&&j>0)
                {
                    dp[i][j] = max(dp[i+1][j],dp[i][j-1]);
                    result = result>dp[i][j]?result:dp[i][j];
                }
            }
        }
        return result;
    }
};

收获:

判断回文子串,可以根据s[i]==s[j]时,j和i的位置关系,来判断dp[i][j]的状态。

dp[i][j]根据需要定义为以s[i]开头s[j]结尾的字符串是否为回文串/回文子序列最大长度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值