分治和自顶向下动态规划算法

Given a string of numbers and operators, return all possible results from computing all the different possible ways to group numbers and operators. The valid operators are+,- and *.


Example 1

Input: "2-1-1".

((2-1)-1) = 0
(2-(1-1)) = 2

Output: [0, 2]


Example 2

Input: "2*3-4*5"

(2*(3-(4*5))) = -34
((2*3)-(4*5)) = -14
((2*(3-4))*5) = -10
(2*((3-4)*5)) = -10
(((2*3)-4)*5) = 10

Output: [-34, -14, -10, -10, 10]


解题的思路是分治算法,比如上面的2*3-4*5

让str1 = 2 *3,str2 = 4 × 5;如此,变为str1 - str2,把一个问题分解成了两个规模更小的子问题。

自顶向下动态规划算法:用一个hash表保存问题与解集的映射,如果次问题已经出现过,直接查找hash表,反之求解,并把解集放如hash表。

#include<vector>
#include<string>
#include<unordered_map>
using namespace std;

class Solution {
    unordered_map<string,vector<int>> map;
public:
    vector<int> diffWaysToCompute(string input) {
        return divide(input);
    }

    vector<int> divide(const string& str){
        if(map.find(str) != map.end())
            return map[str];
        vector<int> res;
        for(int i = 0; i < str.size(); ++i){
            char ch = str[i];
            if(isOpperator(ch)){
                string sub1 = str.substr(0,i);
                string sub2 = str.substr(i+1);
                vector<int> v1 = divide(sub1);
                vector<int> v2 = divide(sub2);
                vector<int> v = genrate(v1,v2,ch);

                for(int each: v)
                    res.push_back(each);
            }
        }

        if(res.empty())
            res.push_back(atoi(str.data()));
        map[str] = res;
        return res;
    }

    bool isOpperator(char c){
        return c == '+' || c == '-' || c =='*';
    }

    vector<int> genrate(const vector<int>& a,const vector<int>& b,char c){
        vector<int> res;
        for(int i = 0; i < a.size(); ++i){
            for(int j = 0; j <b.size(); ++j){
                int val;
                if(c == '+')
                    val = a[i] + b[j];
                else if(c =='-')
                    val = a[i] - b[j];
                else if(c == '*')
                    val = a[i] * b[j];

                res.push_back(val);
            }
        }
        return res;
    }
};



### 回答1: 动态规划算法分治都是常用的算思想,但二者有很大的不同点。 1. 问题类型不同:动态规划算法主要用于求解最优解问题,如最大子序列和、最长递增子序列等;分治则主要用于分解问题,如归并排序、快速排序等。 2. 问题求解方式不同:动态规划算法是通过找到子问题的最优解来推导出整个问题的最优解,具有重叠子问题和最优子结构两个特点;分治则是将问题分解成若干个子问题,然后通过分治求解子问题,再将子问题的解合并得到原问题的解。 3. 算时间复杂度不同:动态规划算法通常需要使用一张表来存储子问题的解,因此空间复杂度较高,但时间复杂度比分治更低,通常为O(n^2)或O(nlogn);分治的时间复杂度通常为O(nlogn),但空间复杂度较低。 4. 适用范围不同:动态规划算法适用于有重叠子问题和最优子结构的问题,如背包问题、最长公共子序列等;分治适用于可分解成若干个子问题的问题,如排序、查找等。 总之,动态规划算法分治都有其优点和适用范围,需要根据具体问题选择合适的算。 ### 回答2: 动态规划算法分治是两种常用的问题求解方,它们在解决问题时有着不同的使用策略和思想。 动态规划算法是一种将复杂问题分解为多个小问题,并通过记录和利用子问题的解来求解整个问题的方动态规划算法通常通过建立一个表格来保存子问题的解,以避免重复计算。具体而言,动态规划算法将问题划分为多个相互关联的子问题,并利用子问题的解构建最优解。通过子问题间的递推关系,可以在计算过程中不断更新表格中的值,最终得到整个问题的最优解。动态规划算法通常适用于问题的求解过程具有重叠子问题性质,并且存在最优子结构的情况。 分治是一种将复杂问题分解为多个独立的子问题,然后将子问题的解组合起来得到整个问题的解的方分治通常将问题分割成若干个规模较小且结构相同的子问题,并递归地求解每个子问题的解。子问题的解合并成整个问题的解通常需要利用一些特定策略。分治通常适用于问题可以被划分为多个相互独立的子问题,并且子问题的解可以合并成整个问题的解的情况。 动态规划算法分治的主要区别在于它们对子问题的处理方式不同。动态规划算法通过记录子问题的解来避免重复计算,而分治则是将子问题的解独立求解并最终组合。因此,动态规划算法通常适用于具有重叠子问题性质的问题,而分治通常适用于可以将问题划分为独立子问题的情况。 ### 回答3: 动态规划算法分治是两种常见的问题解决方,它们的差别主要体现在以下几个方面。 首先,动态规划算法是一种将问题分解为相互重叠子问题并利用子问题的解来解决整个问题的方。它通过构建一个动态规划表或数组来存储子问题的解,避免了重复计算,提高了效率。而分治则是将问题划分为相互独立的子问题,通过递归地解决子问题并将结果合并得到原问题的解。 其次,动态规划算法适用于子问题的解有重叠的情况,即同一个子问题可能会被多次求解。通过保存已解决的子问题的解,动态规划算法可以避免重复计算,减少时间复杂度。而分治则适用于子问题相互独立的情况,即每个子问题的解只需计算一次,没有重复计算的开销。 另外,动态规划算法通常需要一个二维表或数组来存储子问题的解,需要额外的空间来存储中间结果。而分治则不需要额外的空间,因为每个子问题的解是独立存储的。 最后,动态规划算法一般采用自底向上的迭代方式求解子问题,先解决较小规模的子问题,再通过子问题的解来解决规模更大的子问题,最终得到原问题的解。而分治则一般采用自顶向下的递归方式求解子问题,将原问题分解为更小规模的子问题,再递归地求解子问题,最后将子问题的解合并得到原问题的解。 总之,动态规划算法分治虽然都是常见的问题解决方,但在问题分解、解决顺序、空间复杂度等方面存在差异。具体选择哪种方取决于问题的特点和要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值