breast_classification_ResNet 训练结果

本文详细描述了一项使用ResNet预训练模型进行乳腺癌分类的实验,通过调整batch_size为16,epochs为100,并设置初始学习率为0.0002。实验结果显示模型精度达到0.671875,提供了混淆矩阵分析。关键信息包括了模型架构的改动和评估指标。
摘要由CSDN通过智能技术生成

breast_classification_ResNet 训练结果

运用了迁移学习,下载ResNet网络的权重文件,不改变原网络结构,在最后加上一个全局平均池化层、1024的FC、2的FC

实验一:
batch_size = 16
epochs = 100
初始学习率:0.0002
训练结果
在这里插入图片描述
在这里插入图片描述
实验一:
batch_size = 16
epochs = 100
初始学习率:0.0002
训练结果

在这里插入图片描述
在这里插入图片描述
混淆矩阵:在这里插入图片描述
the model accuracy is 0.671875
±----------±----------±-------±------------+
| | Precision | Recall | Specificity |
±----------±----------±-------±------------+
| benign | 0.672 | 1.0 | 0.0 |
| malignant | nan | 0.0 | 1.0 |
±----------±----------±-------±------------+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值