【题目描述】
计算两个矩阵的乘法。n×m阶的矩阵A乘以m×k阶的矩阵B得到的矩阵C 是n×k阶的,且
C[i][j] = A[i][0]×B[0][j] + A[i][1]×B[1][j] + …… +A[i][m-1]×B[m-1][j]
(C[i][j]表示C矩阵中第i行第j列元素)。
【输入】
第一行为n, m, k,表示A矩阵是n行m列,B矩阵是m行k列,n, m, k均小于100。
然后先后输入A和B两个矩阵,A矩阵n行m列,B矩阵m行k列,矩阵中每个元素的绝对值不会大于1000。
【输出】
输出矩阵C,一共n行,每行k个整数,整数之间以一个空格分开。
【输入样例】
3 2 3
1 1
1 1
1 1
1 1 1
1 1 1
【输出样例】
2 2 2
2 2 2
2 2 2
【源代码】
#include <iostream>
using namespace std;
int matrix_A[100][100] = {};
int matrix_B[100][100] = {};
int matrix_C[100][100] = {};
int main()
{
int n, m, k;
cin >> n >> m >> k;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
cin >> matrix_A[i][j];
}
}
for (int i = 0; i < m; i++)
{
for (int x = 0; x < k; x++)
{
cin >> matrix_B[i][x];
}
}
for (int i = 0; i < n; i++) // 注意嵌套循环的顺序;
{
for (int x = 0; x < k; x++)
{
for (int j = 0; j < m; j++)
{
matrix_C[i][x] += (matrix_A[i][j] * matrix_B[j][x]);
}
}
}
for (int i = 0; i < n; i++)
{
for (int x = 0; x < k; x++)
{
if (x != (k - 1))
{
cout << matrix_C[i][x] << ' ';
}
else if (x == (k - 1))
{
cout << matrix_C[i][x] << endl;
}
}
}
return 0;
}