责任说明:本项目为作者的毕设项目,仅供大家参考学习,切勿直接抄袭。
github项目地址:https://github.com/jiqiu123/KG-VAQSystemOnMedical-master
设计总说明
本设计项目旨在开发基于Neo4j的医疗知识图谱可视化系统。近年来,随着医疗数据量的迅速增长,知识图谱作为一种将不同实体和关系关联并可视化的工具,为医学领域的研究和应用提供了新的机会。本项目的任务来源于希望通过知识图谱整合医疗领域的多源数据提供一种直观、交互的方式来探索医疗信息的关联性。为了确保设计质量和系统稳性,本项目遵循以下设计标准:具备扩展能力,能够添加新的实体和关系,支持未来需求的变化;提供直观、易用的可视化界面,帮助用户快速理解知识图谱的结构;具有良好的交互体验,用户可以轻松浏览、搜索和探索知识图谱;保持高效的性能,即使面对大量数据和复杂查询,也应保持响应迅速;系统应确保数据的安全与隐私,防止未经授权的访问和数据泄露。在设计过程中,本项目采用以下原则:系统的设计应分为独立模块,以便于维护和扩展;设计需具备一定的灵活性,能够适应不同的应用场景;界面设计应注重用户体验,确保易用性和可操作性;系统应具备稳健性,确保运行稳定。同时本项目的创新点为将医疗小助手与可视化界面联合起来,而不是使两个系统孤立开来。医疗小助手回答中会将系统中储存的疾病关键词标红,用户可以提供点击任意标红疾病关键词跳转至可视化界面,并直接生成对应的知识图谱。
本项目使用了多种技术和工具,以下是主要的技术资料:Neo4j官方文档,提供了图数据库的使用方法和最佳实践,为知识图谱的构建提供指导;Py2neo库,这是一个与Neo4j交互的Python库,帮助实现节点和关系的创建及查询;Flask框架,一个轻量级的Web框架,用于构建后端服务和API;D3.js库,用于知识图谱的可视化,提供了丰富的交互功能。设计过程主要包括以下步骤:确定系统需要构建哪些实体和关系,明确系统的功能需求;构建系统的总体架构,确定数据库设计和模块划分;定义知识图谱中的实体、关系和属性,并使用Neo4j实现;使用Flask构建后端服务,使用Py2neo与Neo4j交互,前端使用D3.js进行可视化;对系统进行测试,修复错误,确保系统稳定运行;将系统部署到目标环境,制定维护计划。
本项目成功构建了一个完整的医疗知识图谱可视化系统,主要结果如下:在该知识图谱系统中,构建了涵盖疾病、症状、药物、科室等实体,以及实体之间的各种关系;系统提供了基于D3.js的可视化界面,用户可以浏览和探索知识图谱;系统支持多种搜索和查询功能,用户可以搜索实体和关系,进行相关分析;系统在测试中表现良好,能够处理较大规模的数据,保持稳定运行。
本项目通过构建医疗知识图谱可视化系统,为医疗信息管理和研究提供了一种有效工具。尽管在设计过程中遇到了一些挑战,但最终实现了预期目标,为后续研究和应用打下了基础。
1. 知识图谱是什么?
1.1 知识图谱的概念
知识图谱,作为一种技术工具,通过图模型这一形式,深入刻画并构建起了世间万千实体与抽象概念间错综复杂的联系网络。这一图谱的构建基础在于节点与边的精妙结合,其中,节点象征着各式各样的实体,无论是具体的个体如人物、书籍,还是抽象的概念如人工智能、知识图谱等,而边则巧妙地连接着这些实体或概念,揭示出它们之间的内在联系与相互影响。通过这样的方式,知识图谱提供了一种全新的视角。而边则用于表示这些实体或概念之间的属性或关系,比如一个人的姓名、一本书的书名,以及更为复杂的实体间关系,如朋友关系、配偶关系等。这种结构化的表示方法能够清晰、直观地展示世界万物的相互关联,为信息检索、数据分析等任务提供有力的支持。知识图谱的早期理念来自Semantic Web(语义网络),其最初理想是把基于文本链接的万维网落转化为基于实体链接的语义网络。它的核心思想是将大量的信息结构化地组织起来,以便计算机可以理解、推理和利用这些信息,从而实现智能化的数据分析、推荐和决策。
1.2 知识图谱的本体要素介绍
在知识图谱的构建中,实体作为其核心组成部分,代表了现实世界中的具体对象或抽象概念。这些实体既可以是具体的个体,如人物、地点、组织、书籍、电影等,也可以是抽象的概念或联系,如情感状态、哲学思想、学术理论等。对于知识图谱的完整性而言,准确识别和细致分类这些实体是至关重要的第一步。
此外,关系在知识图谱中扮演着至关重要的角色,它们作为连接不同实体的桥梁,揭示了实体之间的相互作用和紧密联系。这些关系不仅描述了实体间的语义关联,如家庭关系、友情纽带、包含关系等,还进一步丰富了知识图谱的内涵。因此,关系的精准识别和分类对于深入理解实体间的互动模式具有不可或缺的意义。
在知识图谱中,属性作为描述实体或关系特征的元数据,提供了关于这些元素更为详尽的信息。无论是实体还是关系,都可以拥有各自的属性。例如,一个人物实体可能具有姓名、年龄、性别等属性,而一个组织实体则可能包含成立时间、总部地点等属性。这些属性不仅丰富了知识图谱的语义层次,还使其更加贴近现实世界的复杂性。
最后,在知识图谱中,概念是对一类相同事物的不同个体的总称。它们类似于面向对象编程中的类(Class)概念,为实体提供了分类和归纳的依据。例如,“水果”就是一个概念,而“苹果”、“香蕉”等则是这一概念下的具体实例。概念在知识图谱中起到了构建层次化知识结构的关键作用,使得知识图谱更加系统化和易于理解。
1.3 知识图谱的分层架构
知识图谱的构建涉及两个关键层次:数据层与模式层。其中,模式层扮演着至关重要的角色,它不仅构成了知识图谱的概念框架和逻辑基石,更定义了图谱中的核心要素,包括概念、关系、属性以及规则。这一层次的设立为数据层提供了明确的规范与约束,确保了知识图谱的严谨性和一致性。这一结构确保了知识图谱的一致性和准确性,为后续的数据分析、信息检索等任务提供了坚实的基础。在知识图谱的构建中,本体(Ontology)通常作为模式层的核心组成部分,它负责界定图谱中的基本概念、关联、特性以及准则。本体不仅为数据层提供了标准化的框架,还确保了图谱的一致性和规范性,对于知识图谱的整体结构具有至关重要的作用。通过本体定义的规则和公理,可以确保知识图谱中的数据在结构和语义上保持一致性和准确性。这种结构化的表示方法有助于提升知识图谱的质量,并为后续的数据分析、信息检索等任务提供坚实的基础。知识图谱亦可被视为本体的一种具体实现或实例化。若其不具备推理能力,则它主要聚焦于数据层的表现,而并未涵盖定义核心概念、关系和规则的模式层。这样的结构虽然侧重于数据的存储与展示,但在逻辑完整性和功能丰富性上可能有所欠缺。在知识图谱的模式层中,节点表示本体概念,边表示概念之间的关系。
在数据层中,事实信息通过“实体-关系-另一实体”或“实体-特定属性-对应属性值”的三元组结构进行存储,构建成一个网络状的知识库。其中,实体作为知识图谱的基础构建单元,涵盖了具体的人名、组织机构名、地理位置、日期以及时间等。关系则代表着两个实体之间所存在的语义联系,是模式层定义关系的具体实现。而属性则是对实体特性的描述,通过实体与属性值之间的映射关系,为实体提供了更为详尽的说明。属性可以被视为实体与属性值之间的hasValue 关系,因此也可以转化为以“实体-关系-实体”的三元组形式存储。在知识图谱的数据层中,节点表示实体,边表示实体之间的关系或实体的属性。
1.4 知识图谱构建流程及应用
本文提出了一种基于自下而上和自上而下两种方法来建立知识图谱。本文介绍了一种基于开放领域的知识图谱,即通过自下向上的方式自动抽取概念和概念间的联系。目前,大多数领域知识图谱都是从上到下建立本体的。一方面,领域知识图谱所涉及的概念和范围相对于开放领域知识图谱而言是固定的的;而领域知识图谱,则要求它的精确度要高一些。自顶向下是先把本体和数据模型定义为知识图谱,然后在知识库中加入实体。
图1-1 知识图谱技术架构图
2. 技术平台关键点介绍
整体框架平台集成开发环境为:
Pycharm+neo4j-community-5.16.0+JDK1.6+Python3.10+Microsoft Edge 124.0.2478.67 (64 位)。
技术平台为:py2neo+json+flask+D3.js+ahocorasick。
2.1 技术路线
数据收集与整合: 首先,需要收集来自多个来源的数据,包括文本数据、结构化数
据和半结构化数据。这些数据来自于公开数据集、网络抓取、API接口等渠道。然后,利
用数据整合技术将这些数据进行处理和整合,构建知识图谱的数层。
本体建模与规范化: 接下来,设计和建立知识图谱的模式层。可以借助本体描述语言(如OWL)来进行本体建模,并严格规范模式层的结构和约束。
知识图谱构建与存储: 利用已经整合和规范化的数据,在构建知识图谱的数据层时,我们选择采用图数据库或三元组存储技术来高效地存储和管理知识图谱的数据。这些技术能够准确捕捉和表示图谱中的节点(代表各种实体或概念)以及它们之间的边(代表关联关系),从而确保知识图谱的完整性和准确性,并保证数据的一致性、完整性和可扩展性。
可视化算法与界面设计: 开发可视化算法和用户界面,支持用户对知识图谱中实体、属性和关系的交互式探索。这涉及到图形布局算法、图形渲染技术等,以及用户界面设计原则和实践。
交互式探索与信息检索: 实现交互式探索功能,使用户可以通过图形界面对知识图
谱进行浏览、搜索和查询。开发多层次的信息筛选和检索功能,支持实体搜索、属性分析、关系探索等。系统集成与部署: 将各个模块整合起来,构建完整的基于知识图谱的可视
化系统。进行系统测试和调试,确保系统稳定性和性能。最后,部署系统到相应的平台上,并提供用户友好的配置管理。
3. 需求分析
3.1 一般性需求分析
集中疾病智能问答,知识图谱可视化,数据库后端管理为一体,为用户提供全面的疾病与医疗数据。
3.2 系统功能描述
表3-1系统功能描述表
功能名称 |
备注 |
主页跳转 |
根据用户需求,进入不同的界面 |
数据库管理 |
进入数据库后台进行数据管理 |
智能医疗助手 |
为用户的疾病相关问题进行回答 |
知识图谱可视化 |
根据用户提供的疾病关键字,生成相关可视化图谱 |
关系边显示 |
根据用户选择关系边选项,显示知识图谱对应关系边 |
节点显示 |
根据用户选项,只显示所有相关节点 |
关系显示 |
根据用户选择,显示或隐藏所有关系 |
3.3 可行性分析
基于对当前系统的初步调查,可以设定新系统的目标,这些目标即为新系统建成后预期达到的运行标准,它们将成为系统开发和评估的基准。新系统应保留现有系统的优势,同时改进其不足之处。此外,新系统的目标应与当前系统的基本功能紧密相连,并可根据实际情况分阶段逐步实现。需要强调的是,新系统的目标在总体规划阶段可能无法详尽设定,而是在后续的开发过程中逐步清晰化和量化。
对基于知识图谱的可视化系统的设计与实现课题进行可行性分析,在正式着手实现前是十分重要的。而在新系统的目标确定后,就可以通过对以下三方面来对能否实现新系统目标进行可行性分析:
1.技术可行性:当前,图数据库、可视化算法、前端开发技术等方面的技术已经相对成熟,并且有许多现成的工具和库可供使用,如Neo4j、D3.js等。因此,在技术上实现这样一个系统是可行的。
2.数据可行性:获取和整合多源数据可能是一个挑战,但是随着互联网和开放数据源的不断增加,可以获得大量的结构化和半结构化数据,用于构建知识图谱。此外,许多数据集和API都提供了开放的访问接口,便于数据的获取和整合。
3.用户需求可行性:在知识管理、智能问答系统等领域,对于可视化系统的需求日益增长。构建一个基于知识图谱的可视化系统,能够为用户提供直观、全面的知识视图,满足用户对于知识探索和理解的需求。
4. 概要设计
4.1 系统模块设计
本方案主要包括四个核心模块:数据整合和知识图谱构建、可视化算法和界面开发、多层次信息筛选和检索功能、以及部署和使用工具。
图4-1 任务驱动的知识图谱构建框架
4.2 项目设计
本项目主要用于疾病学术类研究或非学术类简单的疾病问题咨询。该项目主要通过知识图谱可视化功能和智能问答功能,来达到多层次的信息筛选和检索功能,以满足不同用户需求,从学术研究者到普通用户。提高知识图谱的可用性,使知识更容易被利用,从而推动知识管理和智能应用领域的发展。
4.3 设计目标
具体实现目标如下:
1.数据整合和知识图谱构建:从多源数据中构建知识图谱数据库,包括文本、结构化数据和半结构化数据。这将涵盖实体、属性和关系的多维信息。
2.可视化算法和界面开发:设计和实现可视化算法,以呈现知识图谱中的实体、属性和关系,同时开发用户友好的界面,支持交互式探索。
3.多层次信息筛选和检索功能:实现信息筛选和检索功能,以满足不同用户需求,包括实体搜索、属性分析、关系探索等。
4.部署和使用工具:集成用户友好的工具,使知识图谱可视化系统易于部署和使用,包括配置管理、权限控制等功能。
4.4 数据库设计
本系统依托Neo4j数据库来存储和管理数据。数据的保存和安全性是数据库的核心职责,因此,底层引擎以维护数据的完整性和有效性为首要任务至关重要。这要求关系数据库管理系统(RDBMS)必须实施严格的检查机制,以防止任何无效数据未经审查即进入数据库,从而在数据库层面确保数据完整性的强制执行。本系统所使用的数据集medical.json为网上开源疾病数据集而其中的数据爬取于寻医问药网站资讯,保证了数据的可靠度。数据库系统名为neo4j,数据库中将数据集转化为知识图谱各个类型表如下:
表4-1知识图谱实体类型
实体类型 |
中文含义 |
实体数量 |
举例 |
Check |
诊断检查项目 |
3,353 |
肝胆动态显像;胎儿体重预测 |
Department |
医疗科目 |
54 |
心理科;妇科耳;鼻喉科 |
Disease |
疾病 |
8,807 |
短暂性脑缺血发作;心脏病;间歇性斜视 |
Drug |