machine learning
文章平均质量分 81
专注于机器学习算法的学习与研究,与大家分享机器学习的乐趣
August_1989
JAVA核心技术,中间件,高性能,高并发,性能调优,机器学习算法
展开
-
常见面试之机器学习算法思想简单梳理
前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大。 纵观IT行业的招聘岗位,机器学习之类的岗位还是挺转载 2013-11-12 22:11:09 · 4883 阅读 · 0 评论 -
奇异值分解
SVD分解SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章。本节讨论SVD分解相关数学问题,一个分为3个部分,第一部分讨论线性代数中的一些基础知识,第二部分讨论SVD矩阵分解,第三部分讨论低阶近似。本节讨论的矩阵都是实数矩阵。基础知识1转载 2013-07-26 15:42:35 · 1289 阅读 · 1 评论 -
Logistic Regression
初步接触谓LR分类器(Logistic Regression Classifier),并没有什么神秘的。在分类的情形下,经过学习之后的LR分类器其实就是一组权值w0,w1,...,wm. 当测试样本集中的测试数据来到时,这一组权值按照与测试数据线性加和的方式,求出一个z值:z = w0+w1*x1+w2*x2+...+wm*xm。 ① (其中x1,x2,...,xm是某样本数据原创 2013-07-26 15:45:22 · 1702 阅读 · 0 评论 -
k-means聚类算法
K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。 聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如原创 2013-07-26 16:06:20 · 2127 阅读 · 2 评论 -
EM算法
EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。下面主要介绍EM的整个推导过程。1. Jensen不等式 回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数。当x是向量原创 2013-07-26 16:08:51 · 1590 阅读 · 0 评论 -
混合高斯模型和EM算法
这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示。与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取。而且我们认为在给定后,满足多值高斯分布,即。由原创 2013-07-26 16:11:36 · 1487 阅读 · 0 评论 -
判别模型、生成模型与朴素贝叶斯方法
1判别模型与生成模型上篇报告中提到的回归模型是判别模型,也就是根据特征值来求结果的概率。形式化表示为,在参数确定的情况下,求解条件概率。通俗的解释为在给定特征后预测结果出现的概率。比如说要确定一只羊是山羊还是绵羊,用判别模型的方法是先从历史数据中学习到模型,然后通过提取这只羊的特征来预测出这只羊是山羊的概率,是绵羊的概率。换一种思路,我们可以根据山羊的特征首先学习出一个山羊模型,然原创 2013-07-26 16:14:58 · 1407 阅读 · 0 评论 -
线性回归,logistic回归和一般回归
1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识。前四节主要讲述了回归问题,回归属于有监督学习中的一种方法。该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数学模型用于预测或者分类。该方法处理的数据可以是多维的。 讲义最初介绍了一个基本问题,然后引出了线性回归的解决方法,然后针对误差问题做了概率解释。之后介绍了logist原创 2013-07-26 17:48:38 · 2016 阅读 · 0 评论 -
机器学习中规则化和模型选择知识
1 问题 模型选择问题:对于一个学习问题,可以有多种模型选择。比如要拟合一组样本点,可以使用线性回归,也可以用多项式回归。那么使用哪种模型好呢(能够在偏差和方差之间达到平衡最优)? 还有一类参数选择问题:如果我们想使用带权值的回归模型,那么怎么选择权重w公式里的参数?形式化定义:假设可选的模型集合是,比如我们想分类,那么SVM、logistic回归、神经网络原创 2013-07-26 17:51:18 · 2595 阅读 · 0 评论 -
线性判别分析算法(LDA)
1. 问题 之前我们讨论的PCA、ICA也好,对样本数据来言,可以是没有类别标签y的。回想我们做回归时,如果特征太多,那么会产生不相关特征引入、过度拟合等问题。我们可以使用PCA来降维,但PCA没有将类别标签考虑进去,属于无监督的。 比如回到上次提出的文档中含有“learn”和“study”的问题,使用PCA后,也许可以将这两个特征合并为一个,降了维度。但假设我们的原创 2013-07-26 17:55:30 · 3946 阅读 · 0 评论 -
主成分分析(PCA)
主成分分析(Principal components analysis)-最大方差解释在这一篇之前的内容是《Factor Analysis》,由于非常理论,打算学完整个课程后再写。在写这篇之前,我阅读了PCA、SVD和LDA。这几个模型相近,却都有自己的特点。本篇打算先介绍PCA,至于他们之间的关系,只能是边学边体会了。PCA以前也叫做Principal factor analysis原创 2013-07-26 17:58:15 · 3573 阅读 · 0 评论 -
增强学习 (reinforcement learning)
在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y。之后对样本进行拟合、分类、聚类或者降维等操作。然而对于很多序列决策或者控制问题,很难有这么规则的样本。比如,四足机器人的控制问题,刚开始都不知道应该让其动那条腿,在移动过程中,也不知道怎么让机器人自动找到合适的前进方向。 另外如要设计一个下象棋的AI,每走一步实际上也是一个决策过程,虽然对于简单的棋有A*的启发式原创 2013-07-26 18:00:16 · 2210 阅读 · 0 评论 -
机器学习中的决策树算法
一.简介 决策树学习是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树。二.决策树的表示法 决策树通过把实例从艮节点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每一个结点指定了对实例的某个属性的测试,并且该结点的每一个后继分支对应于该属性的一个可能值。分类实例的方法是从这棵树的根节点开始,测试这个结点的属性,然后按照给定实例的原创 2013-07-26 18:02:18 · 1727 阅读 · 0 评论 -
奇异值分解SVD应用——LSI
潜在语义索引(Latent Semantic Indexing)是一个严重依赖于SVD的算法,本文转载自之前吴军老师《数学之美》和参考文献《机器学习中的数学》汇总。————————————在自然语言处理中,最常见的两类的分类问题分别是,将文本按主题归类(比如将所有介绍亚运会的新闻归到体育类)和将词汇表中的字词按意思归类(比如将各种体育运动的名称个归成一类)。这两种分类问题都可用通过转载 2013-07-27 14:48:54 · 1659 阅读 · 0 评论 -
Stanford机器学习---神经网络的学习 Neural Networks learning
本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning转载 2013-07-27 14:52:39 · 1797 阅读 · 0 评论 -
机器学习十大经典算法
一、C4.5C4.5,是机器学习算法中的一个分类决策树算法,它是决策树(决策树也就是做决策的节点间的组织方式像一棵树,其实是一个倒树)核心算法ID3的改进算法,所以基本上了解了一半决策树构造方法就能构造它。决策树构造方法其实就是每次选择一个好的特征以及分裂点作为当前节点的分类条件。C4.5相比于ID3改进的地方有:1、用信息增益率来选择属性。ID3选择属性用的是子树的信原创 2013-07-27 17:19:27 · 12875 阅读 · 0 评论 -
C4.5决策树
C4.5决策树C4.5决策树在ID3决策树的基础之上稍作改进,请先阅读ID3决策树。C4.5克服了ID3的2个缺点:1.用信息增益选择属性时偏向于选择分枝比较多的属性值,即取值多的属性2.不能处理连贯属性OutlookTemperatureHumidityWindyPlayGolf?sunny原创 2013-07-28 13:40:10 · 1759 阅读 · 0 评论 -
curse of dimensionality维数灾难
curse of dimensionality维数灾难或者翻译成维度的咒语,这个咒语出现在很多方面:sampling采样如果数据是低维的,所需的采样点相对就比较少;如果数据是高维的,所需的采样点就会指数级增加,而实现中面对高维问题时往往无法获得如此多的样本点(即使获得了也无法处理这么庞大数据量),样本少不具有代表性自然不能获得正确的结果。combinator转载 2013-07-28 13:43:41 · 3938 阅读 · 0 评论 -
机器学习算法之CART(分类回归树)概要
分类回归树 classification and regression tree(C&RT) racoon优点(1)可自动忽略对目标变量没有贡献的属性变量,也为判断属性变量的重要性,减少变量数据提供参考;(2)在面对诸如存在缺失值、变量数多等问题时C&RT 显得非常稳健(robust);(3)估计模型通常不用花费很长的训练时间; (4) 推理过程完全依据属性变量的取值原创 2013-07-29 11:37:56 · 2978 阅读 · 0 评论 -
机器学习十大算法的每个算法的核心思想、工作原理、适用情况及优缺点
简述机器学习十大算法的每个算法的核心思想、工作原理、适用情况及优缺点等。1)C4.5算法:ID3算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定的测试属性。C4.5算法核心思想是ID3算法,是ID3算法的改进,改进方面有:1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取原创 2013-07-29 15:35:36 · 2943 阅读 · 0 评论 -
梯度、梯度下降法、随机梯度下降法
一、梯度gradient在标量场f中的一点处存在一个矢量G,该矢量方向为f在该点处变化率最大的方向,其模也等于这个最大变化率的数值,则矢量G称为标量场f的梯度。在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。更严格的说,从欧氏空间Rn到R的函数的梯度是在Rn某一点最佳的线性近似。在这个意义上,梯原创 2013-07-29 15:48:27 · 6053 阅读 · 0 评论 -
搜索引擎利用机器学习排序
从使用的数据类型,以及相关的机器学习技术的观点来看,互联网搜索经历了三代的发展历程。 第一代技术,将互联网网页看作文本,主要采用传统信息检索的方法。 第二代技术,利用互联网的超文本结构,有效地计算网页的相关度与重要度,代表的算法有 PageRank 等。 第三代技术,有效利用日志数据与统计学习方法,使网页相关度与重要度计算的精度有了进一步的提升,代表原创 2013-07-29 20:52:15 · 4273 阅读 · 0 评论 -
Quasi-Newton Method--LBFGS
Quasi-Newton Method Quasi-Newton Method每一步计算过程中仅涉及到函数值和函数梯度值计算,这样有效避免了Newton Method中涉及到的Hessian矩阵计算问题。于Newton Method不同的是Quasi-Newton Method在每点处构建一个如下的近似模型: 从上面的近似模型我们可以看出,该模型用B_k代替了Newton Metho原创 2013-08-30 16:22:12 · 4112 阅读 · 0 评论 -
Boosting算法简介
一、Boosting算法的发展历史 Boosting算法是一种把若干个分类器整合为一个分类器的方法,在boosting算法产生之前,还出现过两种比较重要的将多个分类器整合为一个分类器的方法,即boostrapping方法和bagging方法。我们先简要介绍一下bootstrapping方法和bagging方法。 1)bootstrapping方法的主要过程 主要步骤:原创 2013-08-30 16:28:43 · 4399 阅读 · 0 评论 -
集成学习---bagging and boosting
作为集成学习的二个方法,其实bagging和boosting的实现比较容易理解,但是理论证明比较费力。下面首先介绍这两种方法。所谓的集成学习,就是用多重或多个弱分类器结合为一个强分类器,从而达到提升分类方法效果。严格来说,集成学习并不算是一种分类器,而是一种分类器结合的方法。1.baggingbagging算是很基础的集成学习的方法,他的提出是为了增强分类器效果,但是在处理不平衡问题上原创 2013-08-30 16:38:32 · 2131 阅读 · 0 评论