堆排序-C++版(Java类似)

本文详细介绍了一种高效的排序算法——堆排序。通过具体的C++代码实现,展示了如何构建小顶堆和大顶堆,并利用这两种堆结构进行升序和降序排序。文章提供了完整的堆排序实现过程,包括向下调整算法的具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <algorithm>
#include <iostream>
using namespace std;
//小顶堆向下调整,按升序排序或最大的k个值时建大顶堆,按降序排序或计算最大的k个值时建小顶堆。
void MinHeapFixDown(int* a, int i, int n){
    int j = 2*i+1;
    int temp = a[i];
    while(j<n)
    {
        if(j+1<n&&a[j]>a[j+1])//用子节点最小的和待定节点比较。大顶堆向下调整时将">"换成"<",即用子节点最大的和待定节点比较。
            ++j;
        if(temp<a[j])//当子节点最小的都比待定节点大,则满足小顶堆的条件,当前位置即为待定节点的最终位置。大顶堆向下调整时将"<"换成">"即可。
            break;
        else
        {
            a[i]=a[j];
            i=j;
            j=2*i+1;
        }
    }
    a[i]=temp;
}

//大顶堆向下调整
void MaxHeapFixDown(int* a, int i, int n){
    int j = 2*i+1;
    int temp = a[i];
    while(j<n)
    {
        if(j+1<n&&a[j]<a[j+1])//用子节点最大的和待定节点比较。
            ++j;
        if(temp>a[j])//当子节点最大的都比待定节点小,则满足大顶堆的条件,当前位置即为待定节点的最终位置。
            break;
        else
        {
            a[i]=a[j];
            i=j;
            j=2*i+1;
        }
    }
    a[i]=temp;
}
//堆排序
void HeapSort(int *a, int n){
    for(int i= n/2-1;i>=0;i--)//从最后一个非叶节点开始,建立小顶堆
//        MinHeapFixDown(a,i,n);//建小顶堆
        MaxHeapFixDown(a,i,n);//建大顶堆
    for(int i=n-1;i>=1;i--)
    {
        swap(a[i],a[0]);
//        MinHeapFixDown(a,0,i);//降序排序
        MaxHeapFixDown(a,0,i);//升序排序
    }
}

void main()
{
    int a[]={4,5,1,6,2,7,3,8};
    HeapSort(a,8);
    for(int i=0;i<8;i++)
        cout<<a[i]<<endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值