编程基础:
网格简化:
曼哈顿距离:指两个矢量之间的距离,只能移动直角,出租车距离或城市街区距离。
数学基础:
正则化是一种回归的形式,它将系数估计朝零的方向进行约束、调整或缩小。也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险。
L1范数
当p=1时,是L1范数,其表示某个向量中所有元素绝对值的和。
L2范数
当p=2时,是L2范数, 表示某个向量中所有元素平方和再开根, 也就是欧几里得距离公式。
相关参考文献
第二范数最常见,有时会省略下标2
arg
是变元(即自变量argument)的英文缩写。
arg min 就是使后面这个式子达到最小值时的变量的取值
arg max 就是使后面这个式子达到最大值时的变量的取值
例如 函数F(x,y):
arg min F(x,y)就是指当F(x,y)取得最小值时,变量x,y的取值
arg max F(x,y)就是指当F(x,y)取得最大值时,变量x,y的取值
叉乘:
两个向量的正交向量
CV:
gain表示高光度,gain limit 是感光度的范围
数码相机的影像传感器是不可更换的,为了得度到不同的感光度,它需要在信号的A/D转换时变换信号增益(Gain)。
如果光线暗道,就需要提高感光度即加大增益,这会降低信噪比,也就是增大了噪点。
深度学习:
inference就是用训练好的模型去做预测,也就是test或是predict
Embedding就是从原始数据提取出来的Feature,也就是那个通过神经网络映射之后的低维向量。
三维重建:
刚性变换:没有发生形变的变换