《剑指offer 04》二维数组查找
【LeetCode链接】
【题目】🔍
在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
示例:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]给定target=5,返回true
给定target=20,返回false
限制:
0 <= n <= 1000
0 <= m <= 1000
【思路】🧐
首先想到的思路就是遍历数组,找到就返回true,找不到就返回false,这样的时间复杂度为O(N*M),那有没有更优的方法呢?
由题得,每一行都是递增的,每一列也都是递增的,所以我们会萌生二分搜索的思想。
那怎么在二维数组中运用二分的思想呢?
我们知道,在一位数组中二分的核心就是找到中间下标mid,在二维数组中,这个mid就是每两行中前一行的最后一个元素的下标。
为什么呢?🤔🤔
因为我们是否在本行查找或是到下一行查找就取决于target与改下标对于元素值的大小关系,若target小于该元素,则我们在本行找;若target大于该元素,则我们到下面的行去找。
【步骤】💡
这里要注意 matrix.size() 是行数,matrix[0].size() 是列数。
【代码】✒
class Solution {
public:
bool findNumberIn2DArray(vector<vector<int>>& matrix, int target) {
if (matrix.empty() == true)//如果矩阵为空,则一定没有target
return false;
int i = 0;
int j = matrix[0].size()-1;
while (i<matrix.size() && j >= 0)
{
if (matrix[i][j] == target){
return true;
}
if (matrix[i][j]>target){
j--;
}
else{
i++;
}
}
return false;
}
};
【时间复杂度】
该算法最坏情况就是走到左下位置,故时间复杂度为O(N+M)。