《剑指offer 04》二维数组查找

《剑指offer 04》二维数组查找

【LeetCode链接】

二维数组查找

【题目】🔍

在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

示例:

[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]

给定target=5,返回true

给定target=20,返回false

限制:

0 <= n <= 1000
0 <= m <= 1000

【思路】🧐

首先想到的思路就是遍历数组,找到就返回true,找不到就返回false,这样的时间复杂度为O(N*M),那有没有更优的方法呢?

由题得,每一行都是递增的,每一列也都是递增的,所以我们会萌生二分搜索的思想。

那怎么在二维数组中运用二分的思想呢?

我们知道,在一位数组中二分的核心就是找到中间下标mid,在二维数组中,这个mid就是每两行中前一行的最后一个元素的下标。

为什么呢?🤔🤔

因为我们是否在本行查找或是到下一行查找就取决于target与改下标对于元素值的大小关系,若target小于该元素,则我们在本行找;若target大于该元素,则我们到下面的行去找。

【步骤】💡

在这里插入图片描述

这里要注意 matrix.size() 是行数,matrix[0].size() 是列数。

【代码】✒

class Solution {
public:
    bool findNumberIn2DArray(vector<vector<int>>& matrix, int target) {
        if (matrix.empty() == true)//如果矩阵为空,则一定没有target
		    return false;
	    int i = 0;
	    int j = matrix[0].size()-1;
	    while (i<matrix.size() && j >= 0)
	    {
	    	if (matrix[i][j] == target){
		    	return true;
		    }
		    if (matrix[i][j]>target){
		    	j--;
		    }
		    else{
		    	i++;
		    }
	    }
	    return false;
    }
};

【时间复杂度】

该算法最坏情况就是走到左下位置,故时间复杂度为O(N+M)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱敲代码的小邢~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值