- 题目:剑指Offer55-Ⅱ.平衡二叉树
判断一棵输入的二叉树是不是平衡二叉树; - 思路:
判断条件:二叉树的任意节点(不为空的话)的左右子树的高度差 <= 1;空节点也是平衡二叉树;
既然也是求高度,那就类似于剑指Offer55-Ⅰ.二叉树的深度,返回值为当前子树的高度,差别在于:如果当前节点的左右子树高度差 > 1,以何种方式标识当前节点已经不平衡了;
1.后序遍历:
后序遍历就是从树的最下层往上处理
//写法1:通过全局变量res标识,由于判断条件只有abs(lheight - rheight),即便res=false,即从下往行的过程中某棵子树已经不平衡了,依然要遍历全部节点
//时间O(n):必须遍历全部节点, 空间O(n):最坏情况退化为链表时,递归深度为节点总数n
class Solution {
public:
bool res;
int dfs(TreeNode* root) {
if (!root) return 0;
int lheight = dfs(root->left), rheight = dfs(root->right);
if (abs(lheight - rheight) > 1) res = false;
return max(lheight, rheight) + 1;
}
bool isBalanced(TreeNode* root) {
res = true;
dfs(root);
return res;
}
};
//写法2:最优解,通过特殊的返回值-1标识,当左子树遍历完就判断一下,如果左子树不平衡了,就不用递归右子树了
//时间O(n):最坏情况,直到根节点才发现不平衡,通常情况O(n/2),空间O(n):最坏情况退化为链表时,递归深度为节点总数n
class Solution {
public:
int dfs(TreeNode* root) {
if (!root) return 0;
int lheight = dfs(root->left);
if (lheight == -1) return -1;//如果左子树不平衡就提前退出,无需递归右子树
int rheight = dfs(root->right);
if (rheight == -1) return -1;
return abs(lheight - rheight) >= 2 ? -1 : max(lheight, rheight) + 1;
}
bool isBalanced(TreeNode* root) {
if (dfs(root) == -1) return false;
else return true;
}
};