PyTorch 图像分割模型教程
在图像分割任务中,目标是将图像的每个像素归类为某一类,以分割出特定的物体。PyTorch 提供了非常灵活的工具,可以用于构建和训练图像分割模型。我们将使用 PyTorch 的经典网络架构,如 UNet 和 DeepLabV3,并演示如何构建、训练和测试这些模型。
1. 图像分割概述
图像分割的目标是将图像的每个像素进行分类。常见的应用场景有医学图像分割(如肿瘤检测)、自动驾驶(道路、车辆、行人分割)等。
- 语义分割:每个像素被分配给某个类别,例如道路、天空或车辆。
- 实例分割:不仅对物体分类,还要区分物体实例,如区分不同的行人。
PyTorch 中有许多预训练的模型可以直接用于图像分割任务,常用的模型包括 UNet、FCN (Fully Convolutional Network)、DeepLabV3 等。
2. 官方文档链接
3. 准备工作
在开始训练之前,我们需要安装 torch
, torchvision
和 PIL
等依赖项,并准备图像数据集。您可以使用自己的图像数据集,或者使用 COCO、VOC 等常用数据集。
pip install torch torchvision pillow
4. 使用预训练的 DeepLabV3 模型
DeepLabV3 是一个性能优异的语义分割模型,PyTorch 的 torchvision
提供了预训练的 DeepLabV3 模型。我们将使用 COCO 数据集中的预训练模型,并进行推理和测试。
import torch
from torchvision import models, transforms
from PIL import Image
import matplotlib.pyplot as plt
# 加载预训练的 DeepLabV3 模型
model = models.segmentation.deeplabv3_resnet50(pretrained=True)
model.eval() # 切换到评估模式
# 定义预处理步骤
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# 加载图像
input_image = Image.open("test_image.jpg")
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # 创建 batch 维度
# 将输入移到 GPU(如果可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
input_batch = input_batch.to(device)
# 进行预测
with torch.no_grad():
output =