一、对Kafka的认识
1.Kafka的基本概念
2.安装与配置
3.生产与消费
4.服务端参数配置
二、生产者
1.客户端开发
- 必要的参数配置
- 消息的发送
- 序列化
- 分区器
- 生产者拦截器
2.原理分析
- 整体架构
- 元数据的更新
3.重要的生产者参数
三、消费者
1.消费者与消费组
2.客户端开发
- 必要的参数配置
- 订阅主题与分区
- 反序列化
- 消息消费
- 位移提交
- 控制或关闭消费
- 指定位移消费
- 再均衡
- 消费者拦截器
- 多线程实现
- 重要的消费者参数
四、主题与分区
1.主题的管理
- 创建主题
- 分区副本的分配
- 查看主题
- 修改主题
- 配置管理
- 主题端参数
- 删除主题
2.初识KafkaAdminCilent
- 基本使用
- 主题合法性验证
3.分区的管理
- 优先副本的选举
- 分区重分配
- 复制限流
- 修改副本因子
4.如何选择合适的分区数
- 性能测试工具
- 分区数越多吞吐量就越高吗
- 分区数的上限
- 考量因素
五、日志存储
1.文件目录布局
2.日志格式的演变
- v0版本
- v1版本
- 消息压缩
- 变长字段
- v2版本
3.日志索引
- 偏移量索引
- 时间戳索引
4.日志清理
- 日志删除
- 日志压缩
5.磁盘存储
- 页缓存
- 磁盘I/O流程
- 零拷贝
六、深入服务端
1.协议设计
2.时间轮
3.延时操作
4.控制器
5.参数解密
七、深入客户端
1.分区分配策略
2.消费者协调器和组协调器
3._consumer_offsets剖析
4.事务
八、可靠性探究
1.副本剖析
2.日志同步机制
3.可靠性分析
九、Kafka应用
1.命令行工具
2.Kafka Connect
3.Kafka Mirror Maker
4.Kafka Streams
十、Kafka监控
1.监控数据的来源
2.消费滞后
3.同步失效分区
4.监控指标说明
5.监控模块
十一、高级应用
1.过期时间(TTL)
2.延时队列
3.死信队列和重试队列
4.消息路由
5.消息轨迹
6.消息审计
7.消息代理
8.消息中间件选型
十二、Kafka与Spark的集成
1.Spark的安装及简单应用
2.Spark编程模型
3.Spark的运行结构
4.Spark Streaming简介
5.Kafka与Spark Streaming的整合
6.Spark SQL
7.Structured Streaming
8.Kafka与Structured Streaming的整合
总结
面试难免让人焦虑不安。经历过的人都懂的。但是如果你提前预测面试官要问你的问题并想出得体的回答方式,就会容易很多。
此外,都说“面试造火箭,工作拧螺丝”,那对于准备面试的朋友,你只需懂一个字:刷!
给我刷刷刷刷,使劲儿刷刷刷刷刷!今天既是来谈面试的,那就必须得来整点面试真题,这不花了我整28天,做了份“Java一线大厂高岗面试题解析合集:JAVA基础-中级-高级面试+SSM框架+分布式+性能调优+微服务+并发编程+网络+设计模式+数据结构与算法等”
且除了单纯的刷题,也得需准备一本【JAVA进阶核心知识手册】:JVM、JAVA集合、JAVA多线程并发、JAVA基础、Spring 原理、微服务、Netty与RPC、网络、日志、Zookeeper、Kafka、RabbitMQ、Hbase、MongoDB、Cassandra、设计模式、负载均衡、数据库、一致性算法、JAVA算法、数据结构、加密算法、分布式缓存、Hadoop、Spark、Storm、YARN、机器学习、云计算,用来查漏补缺最好不过。
-1624881667155)]
且除了单纯的刷题,也得需准备一本【JAVA进阶核心知识手册】:JVM、JAVA集合、JAVA多线程并发、JAVA基础、Spring 原理、微服务、Netty与RPC、网络、日志、Zookeeper、Kafka、RabbitMQ、Hbase、MongoDB、Cassandra、设计模式、负载均衡、数据库、一致性算法、JAVA算法、数据结构、加密算法、分布式缓存、Hadoop、Spark、Storm、YARN、机器学习、云计算,用来查漏补缺最好不过。