给定一个非负整数数组a1,a2,a3,...,an,每个元素代表一个坐标(1,a1),...,(i,ai),...,(n,an)。从(i,0)到(i,ai)画条直线。找出两条直线,使得这两条直线和x轴形成的容器可以装最多的水。
思路:
其实,本问题就是要求找到两个下标i和j,使(i-j)*min(ai,aj)最大。我们注意到,如果ai<aj,i<j,那么对于任意i<k<j,(i-k)*min(ai,ak)<(i-j)*min(ai,aj)。所以,当果ai<aj,i<j时,要i++;同理,当果ai>aj,i<j时,要j--。
算法从i=1, j=n开始扫描,最后当i=j时就可以找到最大的装水容器。复杂度是O(n)。
代码:
class Solution {
public:
int maxArea(vector<int> &height) {
int i =0;
int j = height.size() - 1;
int best = min(height[i], height[j]) * (j-i);
if(height[i] < height[j])
i++;
else
j--;
while(i < j) {
int area = min(height[i], height[j]) * (j-i);
if(area > best)
best = area;
if(height[i] < height[j])
i++;
else
j--;
}
return best;
}
};