Number of Unique BST 二叉搜索树的个数

本文介绍了如何计算给定节点数量时能构造出的不同结构的二叉搜索树的数量,并提供了两种方法实现,一种是利用卡特兰数公式进行计算,另一种是使用动态规划的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你一个正整数 n, 代表了BST中节点的个数。那么可以构造出多少个异构的BST。

例如: n=3时,有5个异构的BST,如下所示。

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3
方法一:

// O(n) time, O(1) space
public int numTrees(int n) {
    int c = 1;
    for (int i = 2; i <= n; i++)
        c = 2*(2*i-1)*c/(i+1);
    return c;
}

方法二:

  1. f(n) = \sum_{i=1}^n f(i-1) * f(n-i), f(0) = 1, f(1) = 1;
  2. This is nature for DP (see below).
  3. f(n) = (2n)!/n!*(n+1)!, called Catalan number
class Solution {
public:
    int numTrees(int n) {
        vector<int> num(n+1, 0);
        num[0] = 1;
        if(n > 0) num[1] = 1;
        for(int i = 2; i < n+1; i++) {
            for(int j = 0; j < i; j++) {
                num[i] += num[j]*num[i-j-1];
            }
        }
        return num[n];
    }
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值