动态规划求解矩阵累计和最大的路径

该博客探讨了如何运用动态规划算法寻找矩阵中累计和最大的路径。通过实例解析和代码实现,详细阐述了解题思路和过程。
摘要由CSDN通过智能技术生成
/**
* 有一个 M x N 的矩阵,其中每个格子里面都有特定的钱。
* 左上角走到右下角,只能向右或者向下走,问怎么走才能捡到最多的钱。
* 输出捡钱的路径。
* 解析: 动态规划。 首先找到子结构,构造递推式。
* 对于每个位置能捡到的最多的钱是:
*		a[i][j] = max{a[i-1][j] + w[i][j],a[i][j-1] + w[i][j]}
*/

#include <stdio.h>
#define M 5
#define N 4
int w[M][N];	//矩阵
int a[M][N];	//当前捡到的最大的钱的值
int path[M][N];	//记录路径,1表示从上面捡着钱下来,0表示从左边捡着钱过来

void find_path(){
	int i,j;
	a[0][0] = w[0][0];
	//初始化左边界
	for(i=0;i<M;i++){
		a[i][0] = a[i-1][0] + w[i][0];
		path[i][0] = 1;
	}

	//初始化右边界
	for(j=0;j<N;j++){
		a[0][j] = a[0][j-1] + w[0][j];
		path[0][j] = 0;
	}
	
	//两个循环开始自底向上求解
	for(i=1;i<M;i++){
		for(j=1;j<N;j++){
			int up = a[i-1][j] + w[i][j];
			int left = a[i][j-1] + w[i][j];
			if(up > left){
				a[i][j] = up;
				path[i][j] = 1;
			}
			else{
				a[i][j] =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值