/**
* 有一个 M x N 的矩阵,其中每个格子里面都有特定的钱。
* 左上角走到右下角,只能向右或者向下走,问怎么走才能捡到最多的钱。
* 输出捡钱的路径。
* 解析: 动态规划。 首先找到子结构,构造递推式。
* 对于每个位置能捡到的最多的钱是:
* a[i][j] = max{a[i-1][j] + w[i][j],a[i][j-1] + w[i][j]}
*/
#include <stdio.h>
#define M 5
#define N 4
int w[M][N]; //矩阵
int a[M][N]; //当前捡到的最大的钱的值
int path[M][N]; //记录路径,1表示从上面捡着钱下来,0表示从左边捡着钱过来
void find_path(){
int i,j;
a[0][0] = w[0][0];
//初始化左边界
for(i=0;i<M;i++){
a[i][0] = a[i-1][0] + w[i][0];
path[i][0] = 1;
}
//初始化右边界
for(j=0;j<N;j++){
a[0][j] = a[0][j-1] + w[0][j];
path[0][j] = 0;
}
//两个循环开始自底向上求解
for(i=1;i<M;i++){
for(j=1;j<N;j++){
int up = a[i-1][j] + w[i][j];
int left = a[i][j-1] + w[i][j];
if(up > left){
a[i][j] = up;
path[i][j] = 1;
}
else{
a[i][j] =
动态规划求解矩阵累计和最大的路径
最新推荐文章于 2023-07-09 12:17:28 发布
该博客探讨了如何运用动态规划算法寻找矩阵中累计和最大的路径。通过实例解析和代码实现,详细阐述了解题思路和过程。
摘要由CSDN通过智能技术生成