Python和C++计算物理光学波形化学结构数学方程

37 篇文章 0 订阅
27 篇文章 0 订阅

🎯要点

  1. Python | C++代码化排序索引​和计算​:🎯冒泡排序,升序排序,快速排序,索引排序,基于索引数组的排名,基于直接插入的两个键索引,两个相关数组的索引。🎯数学计算1:数据集升序排列后,生成索引和排名​。🎯数学计算2:一定量序列排序后,生成得新索引表,并绘制原始序列。🎯计算3:一定量序列进行冒泡排序,插入排序,快速排序,绘制一张图显示三种排序依赖性,分别定性评估小型和广泛序列的排序算法的性能。
  2. Python | C++代码化霍纳法评估多项式和计算:🎯幂级数展开的指数,连分数正切函数,递归关系的正交多项式,球谐函数 - 相关勒让德函数,球面贝塞尔函数。🎯数学计算1:计算多项式一阶导数的系数,绘制五次勒让德多项式;🎯数学计算2:使用幂级数展开计算函数正弦和反正弦。🎯数学计算3:使用连分数计算指数函数。🎯物理计算4:计算球谐得范数平方并绘制极坐标图。🎯物理计算5:计算给定阶和角度得所有球谐函数和相同阶勒让德多项式之积。🎯物理计算6:球形电磁波的传播由标量亥姆霍兹方程描述,该方程在球坐标中分离变量后,可得出径向方程,其解为圆柱贝塞尔函数和诺依曼函数,计算该函数解并绘图。🎯物理计算7:氢原子波相关勒让德函数,绘制径向概率密度。
  3. Python | C++代码化代数方程和计算:🎯求解真值根:二分法,错误方法的规则,连续近似法,牛顿-拉夫逊法,割线法,伯奇-维塔法,多维函数系统的雅可比行列式,非线性方程组的牛顿法。🎯数学计算1:使用二分法求解指定多项式。🎯数学计算2:使用二分法和割线法返回多项式收敛迭代次数。🎯物理计算3:使用开普勒方程,求解哈雷彗星偏心异常角度值并绘图,使用牛顿法求解整个旋转周期的偏心异常角度值。🎯物理计算4:夫琅和费衍射强度分布,绘制分布图:强度分方程及其第一导数方程,使用割线法和初始近似值求解主衍射最大值半宽,使用错误方法得规则,求解给定范围内强度最大值。🎯物理计算5:普朗克定律表示热平衡状态下黑体发射的电磁辐射的光谱能量密度,绘制光谱能量密度图,求解光谱能量密度的导数的最大值。🎯物理计算6:对给定的圆与抛物线方程,使用雅可比和牛顿法求其交点。🎯数学计算7:求解给定三元非线性方程组。
  4. Python | C++ 代码化线性方程组和计算:🎯求解矩阵方程:部分旋转的高斯消元法,部分旋转高斯-乔丹消元法,部分旋转和矩阵求逆的高斯-约尔消元法,完整旋转高斯-乔丹消元法,使用杜立特法对矩阵 LU 分解,使用 LU 分解的矩阵求逆,三角矩阵求逆,对称正定矩阵的 Cholesky 分解求解,使用 Cholesky 分解的正定矩阵求逆,求解三对角矩阵的线性系统,高斯-赛德尔法求解线性方程组。🎯数学计算1:使用高斯-乔丹消元解矩阵方程。🎯数学计算2:使用LU 因式分解给定方程组。🎯数学计算3:使用LU 因式分解求解三对角矩阵。🎯数学计算4:使用高斯-乔丹消元解非奇异矩阵,检查恒等式。🎯数学计算5:计算矩阵恒等式,并随机生成二维矩阵以及求逆。🎯数学计算6:使用 Cholesky 分解计算对称正定矩阵的逆,生成随机二维下三角矩阵,生成正定矩阵。🎯物理计算7:求逆多贝希斯 D4 小波变换。
  5. Python | C++代码化特征值和计算:🎯数学计算1:使用函数 Jacobi 证明随机可逆对称矩阵。🎯物理计算2:无质量的弹性振动弦正常振动模式下的频率和位移。🎯化学计算3:从四方甲烷分子各个坐标中减去质心坐标,将分子置于其质心系统中,计算笛卡尔坐标下质心系统中分子的惯性张量,求解惯性张量的特征值,使用转置变换矩阵将原子坐标旋转到主轴系,可视化坐标结果。🎯物理计算4:从飞机各个坐标中减去质心坐标,将其放置在质心系统中,计算飞机在笛卡尔质心系统中的惯性张量,从惯性张量的特征值确定主惯性矩,使用转置变换矩阵将飞机坐标旋转到主轴系,分别对飞机施加给定角度的“偏航”和“滚转”,可视化其结果。🎯化学计算5:在 Hückel 理论框架下,找到环苯分子的特征能和特征向量。🎯化学计算6:基于水分子电子结构的密度泛函理论计算,对水分子的鲁坦方程求解泛化特征值。
  6. Python | C++ 代码化列表函数的建模,蒙特卡罗方法,常微分和偏微分方程。

Python可视化电场示例

让我们回忆一下库仑定律:来自位于 r 0 r_0 r0 处的单个点电荷 q 0 q_0 q0 的位于 P P P 点(位置 r r r)的测试电荷 Q Q Q 上的力由下式给出:
F ∗ 0 = k q ∗ 0 Q ( r − r ∗ 0 ) 2 r − r ∗ 0 ∣ r − r 0 ∣ \mathbf{F}*{0}=k \frac{q*{0} Q}{\left(\mathbf{r}-\mathbf{r}*{0}\right)^{2}} \frac{\mathbf{r}-\mathbf{r}*{0}}{\left|\mathbf{r}-\mathbf{r}_{0}\right|} F0=k(rr0)2q0Qrr0rr0
其中库仑常数是 k = 1 / ( 4 π ϵ 0 ) k=1 /\left(4 \pi \epsilon_{0}\right) k=1/(4πϵ0) SI 单位( ϵ 0 \epsilon_{0} ϵ0 是自由空间的介电常数)。 力与两个电荷的乘积成正比,与两个电荷之间的距离的平方成反比,并沿着从电荷 q 0 q_0 q0 到电荷 Q Q Q 的线点。电场就是力 F 0 F_0 F0 与电荷 Q Q Q 的比值。 测试电荷 Q Q Q 在测试电荷的大小变为零的极限。 在实践中,这给了我们:
E ∗ 0 ( r ) = k q ∗ 0 r − r ∗ 0 ∣ r − r ∗ 0 ∣ 3 \mathbf{E}*{0}(\mathbf{r})=k q*{0} \frac{\mathbf{r}-\mathbf{r}*{0}}{\left|\mathbf{r}-\mathbf{r}*{0}\right|^{3}} E0(r)=kq0rr03rr0
在那里我们取消了 Q Q Q,并借此机会合并了两个分母。 这是由 r 0 r_0 r0 处的点电荷 q 0 q_0 q0 引起的 r r r 位置处的电场。

如果我们面临多个点电荷,我们可以应用叠加原理: Q Q Q 上的合力由作用在 Q Q Q 上的各个力的矢量和组成。 因此,如果我们处理 n n n 点电荷 q 0 , q 1 , … , q n − 1 q_{0}, q_{1}, \ldots, q_{n-1} q0,q1,,qn1 分别位于 r ∗ 0 , r ∗ 1 , … , r n − 1 \mathbf{r}*{0}, \mathbf{r}*{1}, \ldots, \mathbf{r}_{n-1} r0,r1,,rn1 处,则情况如图 1.5 所示。 为了便于查看,我们的图形是二维的,但形式主义同样适用于三个维度。 位置 r r r 处的总电场为:
E ( r ) = ∑ i = 0 n − 1 E ∗ i ( r ) = ∑ ∗ i = 0 n − 1 k q i r − r ∗ i ∣ r − r ∗ i ∣ 3 \mathbf{E}(\mathbf{r})=\sum_{i=0}^{n-1} \mathbf{E}*{i}(\mathbf{r})=\sum*{i=0}^{n-1} k q_{i} \frac{\mathbf{r}-\mathbf{r}*{i}}{\left|\mathbf{r}-\mathbf{r}*{i}\right|^{3}} E(r)=i=0n1Ei(r)=i=0n1kqirri3rri
即,单个电场贡献的总和, E i ( r ) \mathbf{E}_{i}(\mathbf{r}) Ei(r)。 请注意,您可以考虑空间中任何一点的总电场 r r r。 另请注意,电场是一个矢量:在空间中的任何点,该 E E E 都有大小和方向。 可视化矢量场的一种方法包括绘制场线,即帮助我们跟踪场方向的假想曲线。 更具体地说,给定点的场线的切线为我们提供了该点的电场方向。 场线不交叉; 它们以正电荷(“源”)开始,以负电荷(“汇”)结束。

绘制场线

我们将在 Python 中绘制电场线; 虽然存在更复杂的向量场可视化方法(例如,线积分卷积),但我们在下面描述的内容应该足以让您对事物有定性的感觉。 虽然绘图函数(甚至库)的变化往往比编程基础设施的其他方面快得多,但无论具体实现是什么样子,所讨论的原则都适用。

我们面临两个任务:首先,我们需要根据方程式(3)在电荷附近的几个点产生电场(矢量),其次,我们需要以这样一种方式绘制场线,以便我们可以从物理上解释正在发生的事情。 和前面的代码一样,我们为每个任务创建一个 Python 函数。 为简单起见,我们从一个只有两个点电荷(大小相等,符号相反)的问题开始。 此外,我们将自己限制在两个维度上(笛卡尔坐标 x 和 y)。

代码 1.3 是一个 Python 实现,其中为了简单起见,库仑常数被分开。 我们首先导入 numpy 和 matplotlib,因为繁重的工作将由函数 streamplot() 完成,该函数需要 NumPy 数组作为输入。 我们还导入了平方根和 deepcopy() 函数,它们可以创建一个不同的列表列表。

import numpy as np
import matplotlib.pyplot as plt
from math import sqrt
from copy import deepcopy
def makefield(xs, ys):
	qtopos = {1: (-1,0), -1: (1,0)}
	n = len(xs)
	Exs = [[0. for k in range(n)] for j in range(n)]
	Eys = deepcopy(Exs)
	for j,x in enumerate(xs):
		for k,y in enumerate(ys):
			for q,pos in qtopos.items():
				posx, posy = pos
				R = sqrt((x - posx)**2 + (y - posy)**2)
				Exs[k][j] += q*(x - posx)/R**3
				Eys[k][j] += q*(y - posy)/R**3
	return Exs, Eys
def plotfield(boxl,n):
	xs = [-boxl + i*2*boxl/(n-1) for i in range(n)]
	ys = xs[:]
	Exs, Eys = makefield(xs, ys)
	xs=np.array(xs); ys=np.array(ys)
	Exs=np.array(Exs); Eys=np.array(Eys)
	plt.streamplot(xs, ys, Exs, Eys, density=1.5, color=‘m’)
	plt.xlabel(‘$x$’)
	plt.ylabel(‘$y$’)
	plt.show()
plotfield(2.,20)

函数 makefield() 接受两个列表 xs 和 ys,对应于我们希望评估电场的坐标(x 和 y 一起构成 r)。我们还需要某种方式来存储点电荷所在的 r i r_i ri。我们选择将这些存储在字典中,该字典从电荷 q i q_i qi 映射到位置 r i r_i ri

对于每个位置 r r r,我们需要评估 E ( r ) \mathbf{E}(\mathbf{r}) E(r):在二维中,它由 E x ( r ) E_{x}(\mathbf{r}) Ex(r) E y ( r ) E_{y}(\mathbf{r}) Ey(r) 组成,即总电场的两个笛卡尔分量。目前只关注其中一个,比如 E x ( r ) E_{x}(\mathbf{r}) Ex(r),我们意识到我们需要为任何可能的 r r r 存储它的值,即对于任何可能的 x 和 y 值。我们决定使用由嵌套列表推导式生成的列表列表。然后我们为 E y ( r ) E_{y}(\mathbf{r}) Ey(r) 创建另一个列表列表。

我们需要绘制(即存储)总电场的 x 和 y 分量的值,在所有所需的值向量 r,即在由 xs 和 ys 组成的二维网格上。这需要计算给定 x 的所有可能 y 处的电场(来自给定点电荷 q i q_i qi 的贡献),然后迭代所有可能的 x。我们还需要迭代我们的点电荷 q i q_i qi 和它们的位置 r i r_i ri​。我们通过在 qtopos.items() 中 for q, pos in qtopos.items() 来做到这一点:此时我们将 pos 解包为 posx 和 posy。

参阅:亚图跨际
  • 23
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值