Python临床医学病态图学习

37 篇文章 0 订阅
33 篇文章 0 订阅

📜用例

📜Python社群纽带关系谱和图神经 | 📜问答知识图谱 | 📜点云三维对象检测图神经 | 📜文本中图结构感知语言模型 | 📜疾病预测图学习 | 📜转录组预测疾病状态 | 📜空间细胞邻域图学习 | 📜预测分子生长抑制图学习 | 📜多态融合算法药物再利用 | 📜病态融合临床诊断 。

✒️Python图学习

我们将摄取 Planetoid Cora 数据集,并对词袋输入特征进行行标准化。之后,我们将分析数据集和第一个图形对象。

from torch_geometric.datasets import Planetoid
from torch_geometric.transforms import NormalizeFeatures

dataset = Planetoid(root='data/Planetoid', name='Cora', transform=NormalizeFeatures())

print(f'Dataset: {dataset}:')
print('======================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')

data = dataset[0]  # Get the first graph object.
print(data)

Cora 数据集有 2708 个节点、10,556 个边、1433 个特征和 7 个类。第一个对象有 2708 个训练、验证和测试掩模。我们将使用这些掩模来训练和评估模型。

Dataset: Cora():
======================
Number of graphs: 1
Number of features: 1433
Number of classes: 7
Data(x=[2708, 1433], edge_index=[2, 10556], y=[2708], train_mask=[2708], val_mask=[2708], test_mask=[2708])

我们将创建一个图卷积网络模型结构,其中包含两个 GCNConv 层 relu 激活和 0.5 的 dropout 率。该模型由 16 个隐藏通道组成。

GCNConv 层 :
x v ( ℓ + 1 ) = W ( ℓ + 1 ) ∑ w ∈ N ( v ) ∪ { v } 1 c w , v ⋅ x w ( ℓ ) x _v^{(\ell+1)}= W ^{(\ell+1)} \sum_{w \in N (v) \cup\{v\}} \frac{1}{c_{w, v}} \cdot x _w^{(\ell)} xv(+1)=W(+1)wN(v){v}cw,v1xw()
W ( ℓ + 1 ) W(\ell+1) W(+1) 是上式中的可转换权重矩阵, C W , v C W, v CW,v 为每条边指定一个固定的归一化系数。

from torch_geometric.nn import GCNConv
import torch.nn.functional as F

class GCN(torch.nn.Module):
    def __init__(self, hidden_channels):
        super().__init__()
        torch.manual_seed(1234567)
        self.conv1 = GCNConv(dataset.num_features, hidden_channels)
        self.conv2 = GCNConv(hidden_channels, dataset.num_classes)

    def forward(self, x, edge_index):
        x = self.conv1(x, edge_index)
        x = x.relu()
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.conv2(x, edge_index)
        return x

model = GCN(hidden_channels=16)
print(model)

>>> GCN(
    (conv1): GCNConv(1433, 16)
    (conv2): GCNConv(16, 7)
  )

让我们使用 sklearn.manifold.TSNE 和 matplotlib.pyplot 可视化未经训练的 GCN 网络的节点嵌入。它将绘制一个嵌入 2D 散点图的 7 维节点。

%matplotlib inline
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE

def visualize(h, color):
    z = TSNE(n_components=2).fit_transform(h.detach().cpu().numpy())

    plt.figure(figsize=(10,10))
    plt.xticks([])
    plt.yticks([])

    plt.scatter(z[:, 0], z[:, 1], s=70, c=color, cmap="Set2")
    plt.show()

我们将评估模型,然后将训练数据添加到未经训练的模型中,以可视化各种节点和类别。

model.eval()

out = model(data.x, data.edge_index)
visualize(out, color=data.y)

我们将使用 Adam 优化和交叉熵损失函数在 100 个 Epoch 上训练我们的模型。

model = GCN(hidden_channels=16)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
criterion = torch.nn.CrossEntropyLoss()

def train():
      model.train()
      optimizer.zero_grad()
      out = model(data.x, data.edge_index)
      loss = criterion(out[data.train_mask], data.y[data.train_mask])
      loss.backward()
      optimizer.step()
      return loss

def test():
      model.eval()
      out = model(data.x, data.edge_index)
      pred = out.argmax(dim=1)
      test_correct = pred[data.test_mask] == data.y[data.test_mask]
      test_acc = int(test_correct.sum()) / int(data.test_mask.sum())
      return test_acc


for epoch in range(1, 101):
    loss = train()
    print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')
GAT(
  (conv1): GATConv(1433, 8, heads=8)
  (conv2): GATConv(64, 7, heads=8)
)

.. .. .. ..
.. .. .. ..
Epoch: 098, Loss: 0.5989
Epoch: 099, Loss: 0.6021
Epoch: 100, Loss: 0.5799

现在,我们将使用测试函数在未见过的数据集上评估模型,如您所见,我们得到了相当不错的结果,准确率达到 81.5%。

test_acc = test()
print(f'Test Accuracy: {test_acc:.4f}')


>>> Test Accuracy: 0.8150

🔗 参阅一:计算思维

🔗参阅二:亚图跨际

  • 36
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值