C++和R穿刺针吸活检肿瘤算法模型模拟和进化动力学量化差异模型

43 篇文章 0 订阅
10 篇文章 0 订阅

🎯要点

🎯模拟肿瘤细胞增生进化轨迹 | 🎯肿瘤生长的随机空间细胞自动机模型 | 🎯模拟穿刺活检的收集空间局部的肿瘤块,模拟针吸活检采集长而薄的组织样本 | 🎯构建不同参数模拟合成肿瘤测试集 | 🎯算法模型计算先验分布、计算概率分布的瓦瑟斯坦距离和欧氏距离 | 🎯细胞进化系统动力学量化分裂差异模型。

📜病理学用例

📜Python和C++骨髓细胞进化解析数学模型

📜Python成像质谱流式细胞术病理生理学

📜Python流感传播感染康复图模型计算和算法

📜Python脑溶质扩散生理几何模型计算

📜Python流感常微分方程房室数学模型

📜Python药物副作用生物图分析算法和矩阵降维算法

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇R瓦瑟斯坦距离

两个概率测度 μ \mu μ ν \nu ν 之间的 p th  p^{\text {th }} pth  瓦瑟斯坦距离,在有限 p th  p^{\text {th }} pth  矩下,可以定义为
W p ( μ , ν ) p = inf ⁡ E [ d ( X , Y ) p ] W_p(\mu, \nu)^p=\inf E \left[d(X, Y)^p\right] Wp(μ,ν)p=infE[d(X,Y)p]
其中 d d d 是一个度量, E [ Z ] E [Z] E[Z] 表示随机变量 Z Z Z 的期望值,下确界取随机变量 X X X Y Y Y 的所有联合分布,边际为分别为 μ \mu μ ν \nu ν。对于 p = 1 p=1 p=1,表明, R R R 上的两个累积分布函数 F 1 F_1 F1 F 2 F_2 F2 之间的一维(一维)瓦瑟斯坦-1 度量可以写为 L 1 L_1 L1距离:
W 1 ( F 1 , F 2 ) = ∫ R ∣ F 1 ( x ) − F 2 ( x ) ∣ d x W_1\left(F_1, F_2\right)=\int_{ R }\left|F_1(x)-F_2(x)\right| d x W1(F1,F2)=RF1(x)F2(x)dx
因此,对于具有数值可处理的累积分布函数的分布,瓦瑟斯坦-1 度量可以用数值积分来近似。值得注意的是,该距离在单调变换(例如,在尺度变换下)下不是不变的。

接下来,我们展示分布 F ( ⋅ ; θ ) F(\cdot ; \theta) F(;θ) 和嵌套兴趣分布 F ( ⋅ ; θ 0 ) F\left(\cdot ; \theta_0\right) F(;θ0) 之间瓦瑟斯坦-1 度量的数值计算示例,对于 θ 0 \theta_0 θ0 的某个固定值。我们省略了位置和比例参数,但可以轻松调整 R 代码以包含这些参数。我们还展示了该函数的图:
M ( θ ) = W 1 ( F ( ⋅ ; θ ) , F ( ⋅ ; θ 0 ) ) = ∫ R ∣ F ( x ; θ ) − F ( x ; θ 0 ) ∣ d x M(\theta)=W_1\left(F(\cdot ; \theta), F\left(\cdot ; \theta_0\right)\right)=\int_{ R }\left|F(x ; \theta)-F\left(x ; \theta_0\right)\right| d x M(θ)=W1(F(;θ),F(;θ0))=RF(x;θ)F(x;θ0)dx
可以解释为测量参数 θ \theta θ 效果的函数。

偏斜正态概率密度函数为:
f ( x ; λ ) = 2 ϕ ( x ) Φ ( λ x ) f(x ; \lambda)=2 \phi(x) \Phi(\lambda x) f(x;λ)=2ϕ(x)Φ(λx)
其中 ϕ \phi ϕ Φ \Phi Φ 分别是标准正态概率密度函数和累积分布函数, λ ∈ R \lambda \in R λR。在这里,我们计算 f ( x ; λ ) f(x ; \lambda) f(x;λ) ϕ ( x ) \phi(x) ϕ(x) 之间的瓦瑟斯坦-1 度量。

library(sn)
library(knitr)
MW1 <- Vectorize(function(par){
  tempf <- Vectorize(function(x)  abs(psn(x, alpha=par)  - pnorm(x)) )
  val <- integrate(tempf,-Inf,Inf)$value
  return(val)
})

lambda <- -5:5
W1 <- MW1(lambda)
print(kable(cbind(lambda,W1),digits=4))
## 
## 
##  lambda       W1
## -------  -------
##      -5   0.7824
##      -4   0.7741
##      -3   0.7569
##      -2   0.7136
##      -1   0.5642
##       0   0.0000
##       1   0.5642
##       2   0.7136
##       3   0.7569
##       4   0.7741
##       5   0.7824

结果绘图

curve(MW1,-10,10, xlab = ~lambda, ylab="M", cex.axis=1.5, cex.lab=1.5, lwd=2, n = 250)

两部分正态概率密度函数定义为:
f ( x ; γ ) = ϕ ( x 1 + γ ) I ( x < 0 ) + ϕ ( x 1 − γ ) I ( x ≥ 0 ) f(x ; \gamma)=\phi\left(\frac{x}{1+\gamma}\right) I(x<0)+\phi\left(\frac{x}{1-\gamma}\right) I(x \geq 0) f(x;γ)=ϕ(1+γx)I(x<0)+ϕ(1γx)I(x0)
其中 ϕ \phi ϕ 是标准正态概率密度函数, γ ∈ ( − 1 , 1 ) \gamma \in(-1,1) γ(1,1)。在这里,我们计算 f ( x ; γ ) f(x ; \gamma) f(x;γ) ϕ ( x ) \phi(x) ϕ(x) 之间的瓦瑟斯坦-1度量。

library(twopiece)
library(knitr)

MW1 <- Vectorize(function(par){
  tempf <- Vectorize(function(x)  abs(ptp3(x, 0, 1, par, FUN = pnorm, param = "eps")  - pnorm(x)) )
  val <- integrate(tempf,-Inf,Inf)$value
  return(val)
})

gamma <- seq(-0.9,0.9,by=0.1)
W1 <- MW1(gamma)
print(kable(cbind(gamma,W1),digits=4))
## 
## 
##  gamma       W1
## ------  -------
##   -0.9   1.4362
##   -0.8   1.2766
##   -0.7   1.1170
##   -0.6   0.9575
##   -0.5   0.7979
##   -0.4   0.6383
##   -0.3   0.4787
##   -0.2   0.3192
##   -0.1   0.1596
##    0.0   0.0000
##    0.1   0.1596
##    0.2   0.3192
##    0.3   0.4787
##    0.4   0.6383
##    0.5   0.7979
##    0.6   0.9575
##    0.7   1.1170
##    0.8   1.2766
##    0.9   1.4362

结果绘图

curve(MW1,-0.99,0.99, xlab = ~gamma, ylab="M", cex.axis=1.5, cex.lab=1.5, lwd=2, n = 250)

指数威布尔分布是一种三参数分布。它包含一个尺度参数、一个形状参数和一个幂(形状)参数 α \alpha α。 指数威布尔分布包含作为特殊情况 ( α = 1 ) (\alpha=1) (α=1) 的威布尔分布。 指数威布尔分布已用于对生存时间进行建模,因为它的风险函数可以捕获基本形状:常数、递增、递减、浴盆和单峰。

如果我们有兴趣比较两条生存曲线 S 1 S_1 S1 S 2 S_2 S2,一种可能的方法是计算生存曲线之间的面积,即它们之间的 L 1 L_1 L1 距离。此外,由于 S i ( ⋅ ) = 1 − F i ( ⋅ ) , i = 1 , 2 S_i(\cdot)=1-F_i(\cdot), i=1,2 Si()=1Fi(),i=1,2,因此
∫ R + ∣ S 1 ( x ) − S 2 ( x ) ∣ d x = ∫ R + ∣ F 1 ( x ) − F 2 ( x ) ∣ d x = W 1 ( F 1 , F 2 ) \int_{ R _{+}}\left|S_1(x)-S_2(x)\right| d x=\int_{ R _{+}}\left|F_1(x)-F_2(x)\right| d x=W_1\left(F_1, F_2\right) R+S1(x)S2(x)dx=R+F1(x)F2(x)dx=W1(F1,F2)
在这里,我们将测量在尺度和形状参数为 1 的情况下功率参数 α \alpha α 的影响,与具有单位尺度和形状参数的威布尔分布相比。

library(knitr)

pexpweibull<- function(t,lambda,kappa,alpha,log.p=FALSE){
  log.cdf <- alpha*pweibull(t,scale=lambda,shape=kappa,log.p=TRUE)
  ifelse(log.p, return(log.cdf), return(exp(log.cdf)))
} 

MW1 <- Vectorize(function(par){
  tempf <- Vectorize(function(x)  abs(pexpweibull(x, 1, 1, par)  - pweibull(x,1,1)) )
  val <- integrate(tempf,0,Inf)$value
  return(val)
})

alpha <- seq( 0.1,5,by=0.1)
W1 <- MW1(alpha)
print(kable(cbind(alpha,W1),digits=4))
## 
## 
##  alpha       W1
## ------  -------
##    0.1   0.8465
##    0.2   0.7118
##    0.3   0.5920
##    0.4   0.4842
##    0.5   0.3863
##    0.6   0.2967
##    0.7   0.2142
##    0.8   0.1378
##    0.9   0.0666
##    1.0   0.0000
##    1.1   0.0626
##    1.2   0.1215
##    1.3   0.1773
##    1.4   0.2301
##    1.5   0.2804
##    1.6   0.3283
##    1.7   0.3740
##    1.8   0.4178
##    1.9   0.4597
##    2.0   0.5000
##    2.1   0.5387
##    2.2   0.5761
##    2.3   0.6120
##    2.4   0.6468
##    2.5   0.6804
##    2.6   0.7129
##    2.7   0.7444
##    2.8   0.7749
##    2.9   0.8045
##    3.0   0.8333
##    3.1   0.8613
##    3.2   0.8886
##    3.3   0.9151
##    3.4   0.9409
##    3.5   0.9661
##    3.6   0.9907
##    3.7   1.0146
##    3.8   1.0381
##    3.9   1.0610
##    4.0   1.0833
##    4.1   1.1052
##    4.2   1.1266
##    4.3   1.1476
##    4.4   1.1682
##    4.5   1.1883
##    4.6   1.2080
##    4.7   1.2274
##    4.8   1.2464
##    4.9   1.2650
##    5.0   1.2833

结果绘图

curve(MW1,0.001,5, xlab = ~alpha, ylab="M", cex.axis=1.5, cex.lab=1.5, lwd=2, n = 1000)

👉参阅、更新:计算思维 | 亚图跨际

  • 16
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值