对于堆排序的理解java
一、堆排序的优缺点
在使用堆排序之前先来了解一下堆排序的优缺点
优点:
- 堆排序的效率与快排、归并相同,都是基于比较的排序算法,效率为(时间复杂度为O(nlogn))。
- 除此之外,他所需要的二外空间为o(1)。
- 堆排序相对稳定,在所有情况下复杂度都为O(n^2)。
缺点:
他的缺点是维护问题,在实际的应用中,数据时时刻刻在发生变化,而数据
发生变化时,就需要重新构建一遍堆。
二、算法实现
- 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区。
- 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n]。
- 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
三、代码演示
public class HeapSort {
public static void main(String[] args) {
int[] arr = {1,5,64,7,8,1,3,45,5,15,6};
//构建堆(大顶堆)
buildHeap(arr);
for (int i = arr.length-1; i > 0; i--) {
//将最后一个元素与第一个元素交换位置
swap(arr,0,i);
//对其从新调整变成堆
adjustHeap(arr,0,i);
}
System.out.println(Arrays.toString(arr));
}
public static void buildHeap(int[] arr){
for (int i = arr.length/2-1; i >= 0; i--) {
adjustHeap(arr,i,arr.length-1);
}
}
/**
*
* @param arr 数组
* @param index 最后一个非叶子节点
* @param len 调整后数组长度
*/
public static void adjustHeap(int[] arr,int index,int len){
int left = index*2+1;
int right = index*2+2;
int temp = index;
if (left < len && arr[left] > arr[temp]){
temp = left;
}
if (right < len && arr[right] > arr[temp]){
temp = right;
}
if (temp != index){
swap(arr,index,temp);
adjustHeap(arr,temp,len);
}
}
public static void swap(int[] arr, int a , int b){
int temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;
}
}