创新模型:CBAM-RegNet 轻量化故障诊断模型(故障诊断、模式识别,图片分类)
一起来学习哟 2025年03月04日 17:17 浙江
模型源码:
创新模型:CBAM-RegNet 轻量化故障诊断模型(故障诊断、模式识别,图片分类)
本文提出了一种基于 CBAM(Convolutional Block Attention Module) 和 RegNet-Y-400MF 轻量级网络的滚动轴承故障诊断模型,并进行了优化以提升诊断性能。该模型的主要创新点如下:
界面:
结合 CBAM 以增强特征表达能力:
CBAM 通过 通道注意力 和 空间注意力 两部分对特征进行优化,使模型能够聚焦于更关键的故障特征区域。通道注意力采用 全局平均池化和最大池化结合,强化重要通道的权重,而空间注意力通过提取通道间特征的统计信息,增强故障特征在空间上的表达能力。相比原始 RegNet,该改进提高了故障模式的可辨识性,增强了模型的泛化能力。
轻量化结构优化,降低计算复杂度:
RegNet-Y-400MF 作为一种轻量级 CNN 模型,本身已经针对计算效率进行了优化。本文进一步 去除原始全连接层(fc),并引入自适应池化(AdaptiveAvgPool2d),使得特征提取更加高效。此外,为了适配 CBAM 模块,特征映射通过 扩展到 7×7 的空间尺寸 进行增强,以充分利用注意力机制,提高故障特征提取的精度。
保持较低计算成本的同时提升性能:
通过 thop 工具计算的 FLOPs(浮点运算次数)和参数量,该模型在保证高分类准确率的同时,显著降低了计算复杂度。这使得模型能够在资源受限的嵌入式设备或工业现场部署,同时具备较强的实时性。
总结
CBAM-RegNet 结合轻量级网络和高效的注意力机制,在保证高诊断准确率的同时,降低了模型参数量和计算复杂度,增强了对复杂故障模式的适应能力和抗噪声能力。该方法为航空发动机滚动轴承等机械设备的智能故障诊断提供了一种高效、可部署的解决方案。