- 博客(73)
- 收藏
- 关注
原创 故障诊断论文复现-基于领域对抗图卷积网络的变工况故障诊断
针对深度网络提取的特征中包含的信息不完整的问题,本文提出了一种领域对抗图卷积网络,用于统一类标签,域标签和数据结构三类信息进行建模。标签,域标签和数据结构三类信息图算法的思想:类标签和域标签分别由分类器和域鉴别器建模,在数据结构中,先使用卷积神经网络获取输入信号的特征,然后将提取的特征输入到图生成层,通过挖掘样本的结构特征之间的关系来构造示例图。然后,利用图卷积网络对实例图进行建模,并利用最大平均差异度量估计不同域实例图的结构差异。
2025-06-02 16:08:43
672
原创 基于凯斯西储数据集的WDCNN轴承故障诊断算法全流程实现
本文介绍了一个基于TensorFlow的WDCNN(宽深卷积神经网络)模型构建与训练过程。首先配置GPU内存分配并导入相关库,然后搭建包含6个卷积层、池化层和3个全连接层的1D卷积网络结构。模型输入为1024长度的时序数据,通过数据预处理函数对.mat文件中的_time后缀数据进行窗口截断处理,生成训练集和测试集。训练结果显示,经过700-1000次epoch训练后,训练集准确率达95.5-96.8%,测试集准确率达85-87%。最后提供了绘制训练过程中损失函数和准确率曲线的可视化方法。
2025-06-02 15:18:15
705
原创 基于改进一维卷积神经网络(WDCNN)的轴承故障诊断方法
本文提出一种基于改进一维卷积神经网络(WDCNN)的轴承故障诊断方法。通过数据增强与标准化处理振动信号,构建轻量化WDCNN模型,采用多尺度卷积核自动提取特征,结合BatchNormalization和L2正则化抑制过拟合。实验显示,该方法在10类轴承故障识别中准确率超过98%,具有特征提取能力强、收敛速度快等优势。研究表明,WDCNN能有效处理原始振动信号,实现高精度智能诊断。
2025-06-02 15:14:10
736
原创 基于STM32的筒仓料位监测系统设计与实现-Protues仿真
在现代农业和工业生产中,筒仓作为重要的物料存储设备,其内部料位的精确监测对于生产管理和安全运营至关重要。本文将详细介绍基于STM32微控制器的筒仓料位监测系统设计,该系统集成了温湿度传感、超声波测距和Wi-Fi无线传输功能,实现了对筒仓环境的全方位监控。主控制器监测筒仓环境测量料位高度实现远程数据传输本地数据显示仿真硬件电路软件设计系统初始化流程。
2025-05-19 09:30:00
576
原创 基于51单片机的全自动洗衣机控制系统-protues仿真
本文详细介绍了基于STC89C51单片机的全自动洗衣机控制系统的设计与实现。系统硬件包括STC89C51主控芯片、LCD1602显示屏、按键矩阵、继电器控制、直流电机和水位传感器等。软件设计涵盖了系统初始化、电机控制、洗涤模式实现、水位检测与定时器中断服务程序。系统提供五种洗涤模式,并通过Proteus进行仿真测试、
2025-05-16 14:42:01
805
原创 基于 YOLOv12 交通标志检测系统
在现代交通管理中,交通标志的准确检测是确保道路安全和交通流畅的重要环节。本文基于YOLOv12算法,设计并实现了交通标志检测系统。YOLOv12通过端到端的目标检测方式,结合多尺度特征融合和目标检测结构,能够在复杂的道路环境中高效定位和识别多种交通标志类型,包括限速标志、停车标志、转向标志和警告标志等。实验结果表明,模型对限速标志、停车标志和转向标志的检测精度接近完美,警告标志的检测精度也处于较高水平,整体检测精度表现优异。
2025-03-25 15:00:44
600
原创 创新模型:CNN-BiLSTM改进模型(故障诊断、模式识别,图片分类)
采用三层 CNN 结构,每层包含卷积、批归一化(BatchNorm)、ReLU 激活函数和最大池化(MaxPooling),能够逐层提取输入数据的局部空间特征,同时降低计算量。双向结构进一步增强了对复杂特征的学习能力。该模型结合了卷积神经网络(CNN)和双向长短时记忆网络(BiLSTM),旨在提高故障诊断的特征提取能力和时间序列建模能力。通过 BiLSTM 处理 CNN 提取的特征,并采用最后时间步的输出进行分类,使模型既能学习空间特征,又能融合时间信息,从而提升诊断精度。
2025-03-04 17:27:24
326
原创 创新模型:CBAM-RegNet 轻量化故障诊断模型(故障诊断、模式识别,图片分类)
此外,为了适配 CBAM 模块,特征映射通过 扩展到 7×7 的空间尺寸 进行增强,以充分利用注意力机制,提高故障特征提取的精度。通道注意力采用 全局平均池化和最大池化结合,强化重要通道的权重,而空间注意力通过提取通道间特征的统计信息,增强故障特征在空间上的表达能力。相比原始 RegNet,该改进提高了故障模式的可辨识性,增强了模型的泛化能力。CBAM-RegNet 结合轻量级网络和高效的注意力机制,在保证高诊断准确率的同时,降低了模型参数量和计算复杂度,增强了对复杂故障模式的适应能力和抗噪声能力。
2025-03-04 17:19:51
427
原创 基于EfficientNet和注意力增强卷积网络的创新模型(故障诊断、模式识别)
通过结合EfficientNet的高效特征提取能力和全局注意力机制(GAM),在图像分类任务中实现了性能与计算效率的平衡。GAM模块的创新设计使得模型能够同时从通道和空间两个维度对特征进行加权,显著提升了特征提取的能力。该模型在计算资源有限的应用场景中具有广泛的应用前景。基于EfficientNet和注意力增强卷积网络的创新模型(故障诊断、模式识别)
2025-03-04 17:09:58
735
原创 C++给定一个正整数n,求出在不大于n的素数中,相邻两个素数的最大距离。
素数的个数是无穷的,但随着数字的增长,素数的分布在变得稀疏,因此相邻素数的平均距离在增加。给定一个正整数n,求出在不大于n的素数中,相邻两个素数的最大距离。输入描述输入只有一个正整数n(3<=n<=10000)输出描述输出只有一个正整数,表示不大于n的素数中,相邻素数的最大距离示例1输入11输出复制4。
2025-02-22 13:47:01
328
原创 FreeRTOS面试笔记
队列是为了任务与任务、任务与中断之间的通信而准备的,可以在任务与任务、任务与中断之间传递消息,队列中可以存储有限的、大小固定的数据项目。任务与任务、任务与中断之间要交流的数据保存在队列中,叫做队列项目。队列所能保存的最大数据项目数量叫做队列的长度,创建队列的时候会指定数据项目的大小和队列的长度。由于队列用来传递消息的,所以也称为消息队列。FreeRTOS 中的信号量的也是依据队列实现的。消息队列可以在任务与任务、任务与中断之间传递消息,队列可以保存有限个具有确定长度的数据单元。
2024-09-20 08:40:44
1241
原创 2009-2021年考研计算机408统考真题+解析获取
链接: https://pan.baidu.com/s/1VGaEb7ZZayYL5j3duGAq4Q?pwd=jyff 提取码: jyff。--来自百度网盘超级会员v5的分享。
2024-09-04 16:47:46
1253
原创 基于对称点模式SDP( symmetrized dot pattern)的轴承故障诊断方法(matlab和python)
基于对称点模式SDP( symmetrized dot pattern)的轴承故障诊断方法(matlab和python)
2024-09-02 10:16:17
568
原创 C/C++数据结构项目实践与应用
C++分数计算器各种分数计算类型都能计算一 目的(1)定义一个整数类。定义一个分数类,由整数类派生。能对分数进行各种计算和输入/输出。可进行分数的加、减、乘和除法等四则运算。流程图:流程图二 需求分析1、问题描述实现分数的计算器功能,对分数进行四则运算和输入/输出。2、需求以及实现功能介绍(1)定义整数类和分数类。其中,包括构造函数、析构函数、显示函数等。(2)输入/输出:对流提取和流插入运算符进行重载。(3)计算功能:可进行分数的加、减、乘和除法运算。
2024-08-16 22:27:46
845
原创 《基于先验未知盲反卷积技术的包络谱重复瞬态的循环平稳性提取》阅读笔记及代码复现
《基于先验未知盲反卷积技术的包络谱重复瞬态的循环平稳性提取》阅读笔记及代码整理
2024-08-16 22:17:59
749
原创 自定义的卷积神经网络模型CNN,对图片进行分类并使用图片进行测试模型-适合入门,从模型到训练再到测试,开源项目
自定义的卷积神经网络模型CNN,对图片进行分类并使用图片进行测试模型-适合入门,从模型到训练再到测试,开源项目
2024-08-16 22:13:12
1045
原创 STM32F103RCT6的5个UART
STM32F103RCT6含有5个UART,UART1位于APB2,最高频率是72M,其他的APB1,最大频率是36M。STM32F103RCT6的5个UART。
2024-08-16 21:59:05
517
原创 对西安交大轴承数据集XJTU-SY_Bearing_Datasets进行读取和处理
读取任意一个工况里的任意一个轴承数据的任意文件csv。#读取数据集的CSV文件并显示。2.matlab读取全寿命数据。读取交大全寿命数据并显示。显式读取路径和图像;
2024-08-16 21:58:28
1282
原创 KEIL5调试使用逻辑分析仪步骤
选项Display type设置为bit类型。2.点击setup,输入需要观察的引脚逻辑。比如需要观察PA8和PD2的逻辑,输入。KEIL5调试使用逻辑分析仪。3.调试run(F5)
2024-08-16 21:57:39
612
1
原创 平衡车基础
有 6 个线,而6P 排线中,中间的四根线(红绿白黑)是编码器的线,只是用于测速,和直流电机本身没有联系。部分的 5 个引脚控制一路电机,蓝色部分的控制另外一路电机,这里只讲其中的 A 路,B 路的使用是一样的。注意,需要由PWN的输出才有 AO1 和 AO2 的信号,只接 AIN1 和 AIN2不会产生 AO1 和 AO2 的信号。到单片机的 PWM 引脚,一般 10Khz 的 PWM 即可,并通过改变占空。直立控制:PD 控制,这是最核心的控制,其他的控制都是相对直立控制而言都是干扰。
2024-08-16 21:56:34
1182
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人