最优化——线性规划中最大规划和最小规划之间的转换

最优化——线性规划中最大规划和最小规划之间的转换

max ⁡ ∑ j = 1 n c j x j ⇒ − ( min ⁡ ∑ j = 1 n − c j x j ) X = ( x i . . . x n ) T ∈ Ω \max \sum_{j=1}^{n} c_{j} x_{j} \quad\quad\quad\quad\Rightarrow\quad\quad\quad\quad -(\min \sum_{j=1}^{n} -c_{j} x_{j}) \\ X=(x_i...x_n)^T \in \Omega maxj=1ncjxj(minj=1ncjxj)X=(xi...xn)TΩ

对于上面的转化的解析:

假设存在 X o p t = ( k 1 . . . k n ) X_{opt}=(k_1...k_n) Xopt=(k1...kn)使得 max ⁡ ∑ j = 1 n c j x j \max \sum_{j=1}^{n} c_{j} x_{j} maxj=1ncjxj成立,即:使得 f ( X ) = c 1 x 1 + . . . c n x n f(X)=c_1x_1+...c_nx_n f(X)=c1x1+...cnxn取值最大;

那么此 X o p t X_{opt} Xopt一定使得 f ( − X ) = − c 1 x 1 − . . . c n x n f(-X)=-c_1x_1-...c_nx_n f(X)=c1x1...cnxn最小,即:使得 min ⁡ ∑ j = 1 n − c j x j \min \sum_{j=1}^{n} -c_{j} x_{j} minj=1ncjxj成立。

但是上面只是求出了使得 f ( X ) f(X) f(X)最大和 f ( − X ) f(-X) f(X)最小的 X X X X o p t X_{opt} Xopt,而 max ⁡ ∑ j = 1 n c j x j ≠ min ⁡ ∑ j = 1 n − c j x j \max \sum_{j=1}^{n} c_{j} x_{j} \neq \min \sum_{j=1}^{n} -c_{j} x_{j} maxj=1ncjxj=minj=1ncjxj

所以最大规划和最小规划之间的转换还差最后一步即在 min ⁡ ∑ j = 1 n − c j x j \min \sum_{j=1}^{n} -c_{j} x_{j} minj=1ncjxj前面加个负号,即 max ⁡ ∑ j = 1 n c j x j = min ⁡ ∑ j = 1 n − c j x j ) \max \sum_{j=1}^{n} c_{j} x_{j}=\min \sum_{j=1}^{n} -c_{j} x_{j}) maxj=1ncjxj=minj=1ncjxj)

这样就成功转化了。

例题

可以试试手:从min到max转换

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>