最优化——线性规划中最大规划和最小规划之间的转换
max ∑ j = 1 n c j x j ⇒ − ( min ∑ j = 1 n − c j x j ) X = ( x i . . . x n ) T ∈ Ω \max \sum_{j=1}^{n} c_{j} x_{j} \quad\quad\quad\quad\Rightarrow\quad\quad\quad\quad -(\min \sum_{j=1}^{n} -c_{j} x_{j}) \\ X=(x_i...x_n)^T \in \Omega maxj=1∑ncjxj⇒−(minj=1∑n−cjxj)X=(xi...xn)T∈Ω
对于上面的转化的解析:
假设存在 X o p t = ( k 1 . . . k n ) X_{opt}=(k_1...k_n) Xopt=(k1...kn)使得 max ∑ j = 1 n c j x j \max \sum_{j=1}^{n} c_{j} x_{j} max∑j=1ncjxj成立,即:使得 f ( X ) = c 1 x 1 + . . . c n x n f(X)=c_1x_1+...c_nx_n f(X)=c1x1+...cnxn取值最大;
那么此 X o p t X_{opt} Xopt一定使得 f ( − X ) = − c 1 x 1 − . . . c n x n f(-X)=-c_1x_1-...c_nx_n f(−X)=−c1x1−...cnxn最小,即:使得 min ∑ j = 1 n − c j x j \min \sum_{j=1}^{n} -c_{j} x_{j} min∑j=1n−cjxj成立。
但是上面只是求出了使得 f ( X ) f(X) f(X)最大和 f ( − X ) f(-X) f(−X)最小的 X X X值 X o p t X_{opt} Xopt,而 max ∑ j = 1 n c j x j ≠ min ∑ j = 1 n − c j x j \max \sum_{j=1}^{n} c_{j} x_{j} \neq \min \sum_{j=1}^{n} -c_{j} x_{j} max∑j=1ncjxj=min∑j=1n−cjxj
所以最大规划和最小规划之间的转换还差最后一步即在 min ∑ j = 1 n − c j x j \min \sum_{j=1}^{n} -c_{j} x_{j} min∑j=1n−cjxj前面加个负号,即 max ∑ j = 1 n c j x j = min ∑ j = 1 n − c j x j ) \max \sum_{j=1}^{n} c_{j} x_{j}=\min \sum_{j=1}^{n} -c_{j} x_{j}) max∑j=1ncjxj=min∑j=1n−cjxj)
这样就成功转化了。
例题
可以试试手:从min到max转换