[bzoj3994]约数个数和

前排提醒,本文是蒟蒻写的,极大可能性出错,请谨慎食用

好久不写数学题了,随便做一下吧。

题目大意:
给定N,M(<=50000),求: Ni=1Mj=1d(ij)

口胡:
首先我们有一个结论: Ni=1Mj=1d(ij)=Ni=1Mj=1NiMj[gcd(i,j)==1]
那么如何证明呢?
首先我们令 F(N,M)=Ni=1Mj=1d(ij)
G(N,M)=Ni=1Mj=1NiMj[gcd(i,j)==1]
做一个二维差分:

F(N,M)F(N1,M)F(N,M1)+F(N1,M1)=d(ij)

于是问题转化为了我们要证明: d(ij)=i|Nj|M1[gcd(i,j)==1]
我们对于所有素数分类讨论,可以发现一个素数p,假设存在 n=npx,m=mpy 那么对于式子左侧我们可以发现这个素数对于答案的贡献就是 x+y+1 ,而式子右侧表示的其实就是 1<=i<=N,1<=j<=m 并且 gcd(i,j)==1 的有序数对的个数,那么我们考虑p,右边式子的贡献就是 (px,1),(px1,1).....(p,1),(1,1),(1,p),(1,p1).....(1,py) ,也只有 x+y+1 种数对。

于是式子得到了证明:

i=1Nj=1Md(ij)=i=1Nj=1MNiMj[gcd(i,j)==1]

下面就是一个裸的反演啦~
i=1Nj=1MNiMj[gcd(i,j)==1]=i=1Nj=1MNiMjd|gcd(i,j)μ(d)=d=1Nμ(d)i=1Ndj=1MdNidMjd=d=1Nμ(d)i=1NdNidj=1MdMjd

我们令 G(N)=Ni=1Ni
于是原式可变形为: Nd=1μ(d)G(Nd)G(Md)
那么 G(n) 函数就是群众喜闻乐见的 d(N) 的前缀和,线性筛约数个数即可。
线性筛复杂度: O(n) 分块求和复杂度: O(n0.5)
code:

#include<bits/stdc++.h>
using namespace std;
const int maxn=5e4+10;
typedef long long ll;
ll prime[maxn],mu[maxn];
bool isprime[maxn];
ll c[maxn],d[maxn];
int cnt;
//c[i]表示i的最小因子的次数 
inline void get(){
    mu[1]=c[1]=d[1]=1;
    for(int i=2;i<=maxn;i++){
        if(!isprime[i]){
            prime[++cnt]=i;
            mu[i]=-1;
            c[i]=1;
            d[i]=2;
        }
        for(int j=1;j<=cnt&&i*prime[j]<maxn;j++){
            isprime[i*prime[j]]=true;
            if(i%prime[j]==0){
                d[i*prime[j]]=d[i]*(c[i]+2)/(c[i]+1);
                c[i*prime[j]]=c[i]+1;
                break;
            }
            mu[i*prime[j]]=-mu[i];
            d[i*prime[j]]=d[i]*d[prime[j]];
            c[i*prime[j]]=1;
        }
    }
    for(int i=1;i<maxn;i++)
        mu[i]+=mu[i-1];
    for(int j=1;j<maxn;j++)
        d[j]+=d[j-1];
}
inline int read(){
    int x=0;char ch=getchar();
    while(!isdigit(ch)) ch=getchar();
    while(isdigit(ch)) x=x*10+ch-48,ch=getchar();
    return x;
}
int n,m;
int main(int argc,const char * argv[]){
    get();
    int T=read();
    while(T--){
        n=read();m=read();
        if(n>m) swap(n,m);
        ll ans=0;
        for(int i=1,nex;i<=n;i=nex+1){
            nex=min(n/(n/i),m/(m/i));
            ans+=(mu[nex]-mu[i-1])*d[n/i]*d[m/i];
        }
        printf("%lld\n",ans);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值