矩阵论
为以后进阶打基础,需要学习矩阵论。有需要的一起来讨论吧!
jjjstephen
就读于天津大学,在做视觉检测相关研究。
技能:软件开发
正在开发技能:ML&DL Paper撰写
待开发技能:硬件开发、硬件设计
展开
-
第四讲:线性变换
第四讲:线性变换原创 2020-02-18 19:24:29 · 176 阅读 · 0 评论 -
第三讲:子空间
第三讲:子空间一、子空间定义1.子空间:设V是数域F上的线性空间,W是V的子集,若对W中的任意元素α、β,及数K∈F,按V中的加法和数乘有:1)α+β∈W2)Kα∈W则W也是数域F上的线性空间,称W为V的线性子空间注:1)由单个零元素组成的子集{0}是线性子空间2 ) 线性空间V是线性子空间3){0}与V被称为V的平凡子空间 dim{0} = 0二、常见子空间1.设A是一给定的...原创 2020-02-09 22:17:12 · 14468 阅读 · 0 评论 -
第二讲:线性表示及坐标
第二讲:线性表示及坐标一、线性表示1.线性表示定义:设β是线性空间V中的向量,若存在V中一组向量{α1,α2,…,αn},及一组数x1,x2,…,xn∈F,使得:β= x1α1+x2α2+…+xnαn则称向量β能被向量组{α1,α2,…,αn}线性表示(线性表出)。2.线性相关设{α1,α2,…,αn}是线性空间V中的一组向量,若存在一组全不为零的数:x1,x2,…,xn使得:x1...原创 2020-02-08 13:00:39 · 4186 阅读 · 0 评论 -
第一讲:线性空间的概念与性质
一、线性空间1.集合的相关知识(1)空集:∅(2)有理数集:Q(3)实数集:R(4)复数集:C2.数域设F是一个非空数集,且0,1∈F,若对F中任意元素a和b,有 a+b∈F,a-b∈F,a·b∈F,a/b(b≠0)∈F,则称F为数域。即:数域就是对加、减。、乘、除四则远算封闭的非空数集。如:实数集R、复数集C3.线性空间设F是一个数域,V是一个非空集合:对F中任意元素α...原创 2020-02-06 18:32:33 · 2699 阅读 · 0 评论