
AI
文章平均质量分 90
金创想
这个作者很懒,什么都没留下…
展开
-
机器学习第一道菜(二):玩转最小二乘法
yfθx之前在一文中,我们建立了线性回归的理论模型,本文就用“最小二乘法”来求解这个模型。原创 2025-01-22 17:00:00 · 1437 阅读 · 0 评论 -
机器学习第一道菜(一):线性回归的理论模型
这样的符号,显得很混乱,就像一支军队个个都穿得花里胡哨的。咱们这样简化处理纯为方便理解,现实生活中可能有1000个影响因素,还拿妹子的微笑来说,真是你花钱就能买到的吗?因为两点确定一条直线,显然,对于上面的散点图来说,不可能找到一条完美的直线,通过所有点。这很好理解,妹子的微笑不可能完全由一根直线决定,因此这些点是有噪声的。以追女孩为例,假设送的礼物越贵,妹子对我们抱以微笑的时候就越多。只要确定了斜率和截距,一次函数的图像形状也就确定了,因此我们要做的就求出k和b。为什么要搞个“西塔”出来,还要带下标呢?原创 2025-01-16 17:03:28 · 1351 阅读 · 0 评论 -
【深度解析】机器学习的“四大绝技”
回归就是从类似上面这样的连续数据中学习它的趋势,以此预测未来走势。牛津词典中对regression的解释:~ (to sth)the process of going back to an earlier or less advanced form or state倒退;回归;退化所以简单来说,回归就是回到过去,预测未来。原创 2025-01-15 17:10:15 · 1091 阅读 · 0 评论 -
机器学习的爆发秘密
机器学习现在很火,但其实这玩艺并不是什么新产物。机器学习的基础理论和算法早就有了,只是一直没有产生炸裂的效应。为什么呢?因为英雄无用武之地,因为没有让它炸裂的环境。就好比今天的你一身武功,你也不敢称霸武林,无法一统江湖,因为你干不过子弹。甚至你想做个大侠都做不畅快,“十步杀一人,千里不留行,事了拂衣去……”,你能吗?你不能,因为你没资格“除暴”,也没资格“劫富”,那是违法滴。你说我不干人事,找个深山老林与大自然亲密接触,深藏身与名。完了,你终于“英雄无用武之地了”!原创 2025-01-14 17:00:48 · 731 阅读 · 0 评论 -
机器学习与人工智能的关系
水不流,会发臭;人不学,会落后。学习是产生智能的第一步。大自然造出了人,人学习,产生了智能。人造出了机器,机器学习,产生了智能。学习是人产生智能的手段,机器学习是人工智能的实现手段。也可以说,机器学习是人工智能的核心。机器学习(ML,Machine Learning),简单来说,就是让计算机通过数据来学习。人学习靠经验,机器学习靠数据(确切地说靠的是大数据,即集合人类的全部经验)。机器学习从大量的数据中提取出有价值的信息,从而不断提升自己的能力。原创 2025-01-13 20:33:56 · 1393 阅读 · 0 评论 -
TensorFlow的简明介绍:机器学习界的谷大拿
通过训练语言模型,TensorFlow可以实现对文本的理解、生成和翻译等功能。张量是 TensorFlow 的核心数据结构,可以看作是多维数组,可以是标量(scalar,0 维)、向量(vector,1 维)、矩阵(matrix,2 维)或更高维的数组。计算图也就是图,也是由一系列节点(Node)和边(Edge)组成,只不过,人家这图是专门用来做计算的。Tensor的意思是“张量”,简单来说就是多维数组,可以想象成是一个装了很多数字的盒子,这些数字可以是标量、向量、矩阵,甚至是更高维度的不明生物。原创 2025-01-11 20:32:42 · 1457 阅读 · 0 评论 -
离程序库越近,离真理越远
机器学习有那么丰富的库,从TensorFlow到PyTorch,再到Scikit-learn,应有尽有,只有你想不到,没有你找不到。这些库强大到什么地步呢?这么说吧,只要你会调包(import),会看文档,基本上就能搭个模型,跑得有模有样,甚至发个论文也不在话下。因此,有些人会对那些埋头研究机器学习原理人嗤之以鼻。老子三两下就出菜了,你学了一溜儿十三招还在原地拉磨!但是,这些程序库就是黑漆漆的永远不掌灯的仓库,你能做的只是从窗口取东西,别想透过窗子看见什么,更别想进入仓库。这些库被称为“黑盒”。原创 2025-01-10 17:00:00 · 1093 阅读 · 0 评论 -
数据分析vs机器学习
经常会看到某大伽说来自“数据分析和机器学习团队”,数据分析和机器学习一个是数据,一个是机器,这俩货为啥总出双入对呢?今天就来掰扯掰扯。原创 2025-01-09 05:00:00 · 1046 阅读 · 0 评论 -
LLMs的简单科普
这个“大”字才是模型的核心,威力的体现,其参数动辄十几亿甚至上万亿。首先,它是一个语言模型,是现代自然语言处理(Natural Language Processing, NLP)领域的核心组成部分,能够处理和理解大量的文本数据,并生成新的、有意义的文本。通俗地讲,就像看书一样,以前是按顺序逐字逐句地读(循环神经网络RNN就类似这种玩法),现在一目十行,而且眼睛会自动关注那些最有价值的信息,这是一种自动注意的能力,就叫“自注意力”。分析文本中的情感倾向,判断文本是积极的、消极的还是中性的。原创 2024-05-23 17:33:34 · 1310 阅读 · 0 评论