特征值和特征向量的几何意义

特征值和特征向量的几何意义

·首先先明确,我们要说的是特征值和特征向量的几何意义,只是从几何的角度来看待他俩的意义,当然她可以从很多个角度看,不仅仅是几何,线性代数起源于几何,但特征值和特征向量的发现与相关定理并不是一定由几何而为,因为它很抽象。

  1. 代数定义:Aa=ka;
  2. 其中A是矩阵,a是一个向量,k是一个常数;

明白矩阵元素的几何意义

要明白几何其几何意义,我们先要明白一个矩阵乘于一个向量是什么意思;

矩阵本来是没什么几何意义的,它只是一个元素排列规则的元素集合,不知道你们好奇过没有,矩阵的运算定义是怎么来的,为什么两个矩阵相加、两个矩阵相乘,矩阵乘于一个常数要按照那样运算,其实矩阵之间的运算规则,不是人为规定创造的,而是向量之间线性运算到代数运算的一个体现;

现在来解释矩阵的运算的几何意义;一个向量的线性运算是这样两个操作,改变向量的方向和改变向量的长度,即把一个向量变成另一个向量,把一个坐标变成另一个坐标。这就是向量的线性运算定义,具体是怎么把一个向量变成另一个向量的,我们只需要改变向量空间的坐标就好,设一个向量是a,a向量坐标有n个元素,我们把a的各个元素坐标改变就需要一个方程元素a1=s1a1+s2a2+…+Snan a向量的a的元素有n个,每个元素都需乘于所有的元素代数和,这样来改变其中一个维度的值,为什么是这样,原因是我们要改变一个坐标,就必须对该坐标的所有维度同时做出改变。这样我们把每个方程的系数提取出来,作为一个A矩阵,把b=Aa 记为这个坐标改变的结果,这就是矩阵乘积的定义,此时我们可以得到,一个矩阵就是对一个向量的线性变化;矩阵的数乘的意义是对每一维度都扩充,所以要乘于矩阵的每一个元素,矩阵相加是两个新的向量的相加,由向量的变化得出矩阵之间线性运算;
我这里只是对线性变化到矩阵运算怎么得到的一个概述,具体的细节,方程具体是怎么写的,大家可以去看《线性代数原理》张远达编的这本书,若不考虑过程,我们只看结果,现在我们知道了,一个矩阵如果参与了矩阵之间的运算,那么矩阵代表的意义就是对一个向量的线性元素,即把一个向量变成另一个向量。看到这里如果你觉得看不懂没有关系,因为你必须自己看到具体的过程才会完全相信这个结论,你可以不相信我,但是你可以相信张远达这个结论是已经被证明过了的,如果你完全相信了这个结论,就可以继续往下看。


从矩阵运算的几何意义看待特征值

现在回过头看 Aa=ka(1) 是个什么意思,其中A代表了一个n元向量空间内的向量的一个线性运算,它表达的是将一个向量朝着某个方向旋转和改变这个向量的长度两个操作;一个向量在n元空间中每一维都是一个方向,比如在三维中有三个方向,如果A表达的是将向量x轴方向的逆转,如果此时a向量在y轴和z轴都是垂直的,那么经过A线性变化后不就刚好使这个向量的方向在一个直线上改变了。但是某些向量并不垂直于y和轴,所以经过A的线性改变后并不是在一个直线上,所以不满足(1)表达式;值得注意的是A对每个向量长度的改变都是一样的;

所以特征值是是什么,特征值是A矩阵对该n元空间中某个向量长度的改变比例值,特征值对应的特征向量是什么,特征向量是在A矩阵线性变化下,向量的方向都只在一个直线上改变的向量。
这就是矩阵运算的几何意义和特征值,特征向量的几何意义;


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值