二叉搜索树(BSTree)

本文介绍了二叉搜索树(BST)的概念和特性,并详细讲解了包括查找、插入和删除在内的主要操作。对于每个操作,都提供了循环版本的实现,并探讨了递归版本的巧妙之处,特别是插入和删除函数中使用引用而不是地址拷贝的技术细节。
摘要由CSDN通过智能技术生成

目录

一、二叉搜索树

 二、二叉搜索树的接口及实现

1、二叉搜索树的查找

2、二叉搜索树的插入

3、二叉搜索树的删除

三、二叉搜索树的递归版本

本期博客主要分享二叉搜索树的底层实现。(主要是笔记,供自己复习使用😂)

一、二叉搜索树

二叉搜索树(BST,Binary Search Tree)又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

若它的左子树不为空,则左子树上所有节点的值都小于根节点的值。

若它的右子树不为空,则右子树上所有节点的值都大于根节点的值。

它的左右子树也分别为二叉搜索树。

 二、二叉搜索树的接口及实现

1、二叉搜索树的查找

a、从根开始比较,查找,比根大则往右边查找,比根小则往左边走查找。

b、最多查找高度次,如果走到空,还没找到,这个值在树中不存在。

代码实现:

bool Find(const K& key)
		{
			Node* cur = _root;
			while (cur)
			{
				if (key < cur->_key)
				{
					//去左树
					cur = cur->_left;
				}
				else if (key > cur->_key)
				{
					//去右树
					cur = cur->_right;
				}
				else
				{
					//找到了
					return true;
				}
			}
			return false;
		}

2、二叉搜索树的插入

a、树为空,则直接新增节点,赋值给root指针

b、树不空,按二叉搜索树性质查找插入位置,插入新节点。

代码实现:

//插入
		bool Insert(const K& key)
		{
			if (_root == nullptr)
			{
				_root == new Node(key);
				return true;
			}
			Node* cur = _root;
			Node* parent = nullptr;
			//查找插入位置
			while (cur)
			{
				if (cur->_key < key)
				{
					//去右树
					parent = cur;
					cur = cur->_right;

				}
				else if (cur->_key > key)
				{
					//去左树
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					//相等
					return false;
				}
			}
			//找到插入位置
			//判断我是左子还是右子
			//因为cur为空,所以要根据值来判断
			cur = new Node(key);
			if (key < parent->_key)
			{
				parent->_left=cur;
			}
			else
			{
				parent->_right=cur;
			}
			return true;
		}

3、二叉搜索树的删除

删除比较麻烦。我们要对它的几种情境进行分析。

a、要删除的节点无孩子节点

b、要删除的节点只有左孩子节点

c、要删除的节点只有右孩子节点

d、要删除的节点有左、右孩子节点

实际情况a可以和情况b或者情况c一块处理。如果右孩子为空,则托孤给父亲节点它的左孩子。如果左孩子为空,则托孤给父亲节点它的右孩子。如果左右孩子都不为空,则要找替换节点。

替换规则:

找右子树的最左节点(右子树值最小),或者找左子树的最右节点(左子树值最大)与要删除节点替换。目的是为了满足根大于左子树而小于右子树。

代码:

bool Erase(const K& key)
		{
			//左孩子为空
			Node* cur = _root;
			Node* parent = nullptr;
			while (cur)
			{
				if (cur->_key < key)
				{
					//key大于_key--去右子树查找
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
					//左子树
				}
				else
				{
					//找到了
					//分为三种情况
					if (cur->_left == nullptr)
					{
						//左孩子为空
						//托孤右孩子
						//判断cur是parent左孩子还是右孩子
						if (cur == _root)//考虑删根的情况
						{
							_root = cur->_right;
						}
						else
						{
							if (cur == parent->_left)
							{
								parent->_left = cur->_right;
							}
							else
							{
								//cur是右孩子
								parent->_right = cur->_right;
							}
						}
						delete cur;
					}
					else if (cur->_right == nullptr)
					{
						//右为空--托孤左孩子
						if (cur == root)
						{
							_root = cur->_left;
						}
						else
						{
							if (cur == parent->_left)
							{
								parent->_left = cur->_left;
							}
							else
							{
								//cur是右孩子
								parent->_right = cur->_left;
							}
						}
						delete cur;
					}
					else
					{
						//左右都不为空
						Node* minRight = cur->_right;//找右子树的最左节点
						parent = cur;
						while (minRight->_left)
						{
							parent = minRight;
							minRight = minRight->_left;
						}
						cur->_key = minRight->_key;
						//最左节点,不可能有左孩子,只可能有右孩子
						if (minRight == parent->_left)
						{
							parent->_left = minRight->_right;
						}
						else
						{
							parent->_right = minRight->_right;
						}
						delete minRight;
					}
					return true;
				}
			}
			return false;
		}

以上是循环版本主要接口的实现。而二叉搜索树递归版本也是非常有趣的。

三、二叉搜索树的递归版本

template<class K>
	struct BSTreeNode
	{
		BSTreeNode<K>* _left;
		BSTreeNode<K>* _right;
		K _key;
		BSTreeNode(const K& key)
			:_left(nullptr)
			,_right(nullptr)
			,_key(key)
		{}
	};

	template<class K>
	class BSTree
	{
		typedef BSTreeNode<K> Node;
	public:
		BSTree()
			:_root(nullptr)
		{}

		BSTree(const BSTree<K>& copyt)
		{
			//拷贝构造
			_root = Copy(copyt._root);

		}

		BSTree<K>& operator=(BSTree<K> t)
		{
			swap(_root, t._root);
			return *this;
		}
		~BSTree()
		{
			Destory(_root);
			_root = nullptr;
		}

		void InOrder()
		{
			_InOrder(_root);
			cout << endl;
		}
		
		bool FindR(const K& key)
		{
			return _FindR(_root, key);
		}
		bool InsertR(const K& key)
		{
			return _InsertR(_root, key);
		}
		bool EraseR(const K& key)
		{
			return _EraseR(_root, key);
		}
	private:
		bool _InsertR(Node*& root, const K& key)
		{
			if (root == nullptr)
			{
				root = new Node(key);
				return true;
			}
			if (root->_key < key)
			{
				return _InsertR(root->_right, key);
			}
			else if (root->_key > key)
			{

				return _InsertR(root->_left, key);
			}
			else
				return false;
			
		}
		bool _FindR(Node* root, const K& key)
		{
			if (root == nullptr)
				return false;
			if (key > root->_key)
			{
				//右子树
				return _FindR(root->_right, key);
			}
			else if (key < root->_key)
			{
				return _FindR(root->_left, key);
			}
			else
				return true;
		}
		bool _EraseR(Node*& root, const K& key)
		{
			if (root == nullptr)
			{
				return false;
			}
			if (root->_key < key)
			{
				return _EraseR(root->_right,key);
			}
			else if (root->_key > key)
			{
				return _EraseR(root->_left, key);
			}
			else
			{
				//找到要删除的节点
				//替换删除?
				if (root->_left == nullptr)
					root = root->_right;
				else if (root->_right == nullptr)
					root = root->_left;
				else
				{
					//左右都不为空
					//找左子树的最右节点,或者右子树的最左节点
					Node* minRight = root->_right;
					while (minRight->_left)
					{
						minRight = minRight->_left;
					}
					//左为空
					swap(root->_key, minRight->_key);
					//交换值后转换成在子树中去删除节点
					return _EraseR(root->_right, key);
				}
				delete del;
				return true;
			}
		}
		Node* Copy(Node* root)
		{
			//前序遍历
			if (root == nullptr)
				return nullptr;
			Node* newRoot = new Node(root->_key);
			newRoot->_left = Copy(root->_left);
			newRoot->_right = Copy(root->_right);
			return newRoot;
		}

		void Destory(Node* root)
		{
			if (root == nullptr)
				return;
			Destory(root->_left);
			Destory(root->_right);
			delete root;
		}
		void _InOrder(Node* root)
		{
			//根左右
			if (root == nullptr)
				return;
			_InOrder(root->_left);
			cout << root->_key << " ";
			_InOrder(root->_right);
		}
		Node* _root;
	};

递归版本实现非常巧妙的地方在于插入接口和删除接口的实现:

他们使用的是root地址的引用而不是地址的拷贝,这一点很是灵巧,博主就不多说大家细细品味其中的妙处使得代码大大简化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值