这个原理听起来会非常简单,但是实际运用却需要极大的构思能量
原理内容:
把n+1个物体放入n个盒子中,则至少有一个盒子内有两个或两个以上物体。
什么当作盒子什么当作物体是关键
例1:
在边长为2的正方形中5个点,至少存在两个点,使得它们之间的距离小于等于
2–√
2
, 显然成立
例2(经典):
任意一群人中至少存在两个人,他们在这群人中认识的人数恰好相等。
设任意一群人为n人
- 当n=2时,显然成立
- 当n>=3时,设xi表示第i个人的熟人数目(0<=xi<=n-1)
- 如果每个xi>0,1<=xi<=n-1,但有n个xi,所以成立
- 考虑一个xi=0,其他xi有1<=xi<=n-2,n-1个xi,所以成立
- 两个xi=0显然成立
原理形式:
把m个物体放入n个盒子中,则至少有一个盒子内至少有 1+[mn] 1 + [ m n ] 个物体。
例1:
40个人中至少
1+[4012]
1
+
[
40
12
]
有两个人是同一月出生。
例2:
人数为6的一群人中,一定有三个人彼此认识或彼此不认识。
这群人中任取一个人设为P,则其余5人分成两部分:F和S
F={与P认识的人},S={与P不认识的人}
F或S中至少有一个至少有3人。不妨设F有3人A,B,C。
A,B,C中分情况讨论
- 设三人都不认识,满足定义后者
- 设三人都认识,满足定义前者
- 不妨A,B认识,和P一起满足前者
推论:
m1,m2...mn m 1 , m 2 . . . m n 为正整数,满足 m1+m2+...+mnn>r−1 m 1 + m 2 + . . . + m n n > r − 1 ,则至少有一个 m>=r m >= r
例1:
将1,2,…,10随机摆成一圈,必有相连的三个数的和至少为17。
所以的三个数的一节的和为 (1+2+...+10)∗3=165 ( 1 + 2 + . . . + 10 ) ∗ 3 = 165
165/10>17−1 165 / 10 > 17 − 1 ,所以一定有一个节大于等于17
Ramsey数
Ramsey定理是鸽巢原理的推广,其一般形式很复杂。
R(a,b)表示至少a个人彼此认识或b个人彼此不认识的最少人数
- 6人群中,一定有至少3个认识或3个彼此不认识
- 10人群中,一定有至少4个认识或3个彼此不认识
R(a,b)也表示完全图,对任意一条边涂以红色或蓝色,至少有红色a边形或蓝色b边形的最少顶点数
- 10点完全图,一定有一个红色三角形或蓝色四边形
- 20点完全图,一定有一个红色四角形或蓝色四边形
R(3,3)<=6 ,R(3,4)<=10 ,R(4,3)<=10 ,R(4,4)<=20
Ramsey数性质
R(a,b)=R(b,a)
R
(
a
,
b
)
=
R
(
b
,
a
)
R(a,2)=a
R
(
a
,
2
)
=
a
R(p,q)<=R(p−1,q)+R(p,q−1)
R
(
p
,
q
)
<=
R
(
p
−
1
,
q
)
+
R
(
p
,
q
−
1
)