样本与事件
样本空间: 随机实验E的所有可能结果的集合S
样本点: 每个可能结果
随机事件: S的所有子集
- 基本事件:单个点组成的事件
- 必然事件:S本身
- 不可能事件:空集
事件之间的关系:
- 相等:互相包含
- 和事件:A并B
- 积事件:A交B
- 差事件:A减B
- 互斥:积事件为空集
- 对立:互斥且和事件为S
      \;\\\;
  
  
\;\\\;
概率性质
- 非负:大于等于0
- 规范:P(S)=1,P(空集)=0
- 可列可加:互斥事件的概率和为其和事件的概率
- 容斥:B≥A,则P(B-A)=P(B)-P(A)
- 逆事件:AB互逆,P(A)+P(B)=1
- 加法:P(A∪B)=P(A)+P(B)-P(AB)
      \;\\\;
  
  
\;\\\;
古典概型
等可能概型,基本事件概率相同
公式: P(A)=K(A中的基本事件数) / N(S中的基本事件数)
此方法可以绕过概率这一说法,变成统计事件的数量
例1:(取球问题)
a个白球,b个红球,k个人不放回得取球,求第i个人取到白球(A)的概率
N:前i个人取球的基本事件数为
(
a
+
b
)
∗
(
a
+
b
−
1
)
…
(
a
+
b
−
i
+
1
)
(a+b)*(a+b-1)…(a+b-i+1)
(a+b)∗(a+b−1)…(a+b−i+1)
K:前i个人取球第i个人取到白球的概率为
a
∗
(
a
+
b
−
1
)
∗
…
(
a
+
b
−
i
+
1
)
a*(a+b-1)*…(a+b-i+1)
a∗(a+b−1)∗…(a+b−i+1)
∴ P ( A ) = a / ( a + b ) \therefore P(A)=a/(a+b) ∴P(A)=a/(a+b)
也就是说,放不放回第i个人取到白球的概率是一样的,当然,i要小于等于a+b
例2:(正品问题)
400件次品,1100件正品,求抽出100件90件为次品的概率
N:抽出100件的事件数为
C
1500
100
C_{1500}^{100}
C1500100
K:抽出90件次品的事件数为
C
400
90
C
1100
10
C_{400}^{90}C_{1100}^{10}
C40090C110010
∴ P ( A ) = C 400 90 C 1100 10 C 1500 100 \therefore P(A)=\dfrac{C_{400}^{90}C_{1100}^{10}}{C_{1500}^{100}} ∴P(A)=C1500100C40090C110010
      \;\\\;
  
  
\;\\\;
条件概率
P ( A ∣ B ) P(A|B) P(A∣B)表示在B事件发生的条件下A发生的概率
区别: 求AB同时发生的概率 P ( A B ) P(AB) P(AB);而已知A发生,求B发生的概率 P ( B ∣ A ) P(B|A) P(B∣A)
公式: P ( A ∣ B ) = P ( A B ) P ( B ) , P ( A B ) = P ( B ) ∗ P ( A ∣ B ) = P ( A ) ∗ P ( B ∣ A ) P(A|B)=\frac{P(AB)}{P(B)},P(AB)=P(B)*P(A|B)=P(A)*P(B|A) P(A∣B)=P(B)P(AB),P(AB)=P(B)∗P(A∣B)=P(A)∗P(B∣A)
乘法定理:
P
(
A
1
A
2
A
3
.
.
.
A
n
)
=
P
(
A
1
)
∗
P
(
A
2
∣
A
1
)
∗
P
(
A
3
∣
A
1
A
2
)
∗
.
.
.
P
(
A
n
∣
A
1
A
2
.
.
.
A
n
−
1
)
P(A_1A_2A_3...A_n)=P(A_1)*P(A_2|A_1)*P(A_3|A_1A_2)*...P(A_n|A_1A_2...A_{n-1})
P(A1A2A3...An)=P(A1)∗P(A2∣A1)∗P(A3∣A1A2)∗...P(An∣A1A2...An−1)
  
  
\;\\\;
  
  
\;\\\;
全概率公式
划分: B 1 , B 2 . . . B n B_1,B_2...B_n B1,B2...Bn为样本空间 S S S的事件,且交集为S,两两互斥,则称 B 1 , B 2 . . . B n B_1,B_2...B_n B1,B2...Bn为 S S S的一个划分
公式:(任意事件A)
P
(
A
)
=
P
(
A
∣
B
1
)
P
(
B
1
)
+
.
.
.
P
(
A
∣
B
n
)
P
(
B
n
)
P(A)=P(A|B_1)P(B_1)+...P(A|B_n)P(B_n)
P(A)=P(A∣B1)P(B1)+...P(A∣Bn)P(Bn)
应用: 当直接求A的概率不好求时,可能找到S的一个划分,如果 P ( A ∣ B i ) P(A|B_i) P(A∣Bi)和 P ( B i ) P(B_i) P(Bi)好求的话
贝叶斯公式
P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) P ( A ∣ B 1 ) P ( B 1 ) + . . . P ( A ∣ B n ) P ( B n ) P(B_i|A)=\frac{P(A|B_i)P(B_i)}{P(A|B_1)P(B_1)+...P(A|B_n)P(B_n)} P(Bi∣A)=P(A∣B1)P(B1)+...P(A∣Bn)P(Bn)P(A∣Bi)P(Bi)
将上述两个公式的n代为2,则变成:
P
(
A
)
=
P
(
A
∣
B
)
P
(
B
)
+
P
(
A
∣
B
‾
)
P
(
B
‾
)
P(A)=P(A|B)P(B)+P(A|\overline B)P(\overline B)
P(A)=P(A∣B)P(B)+P(A∣B)P(B)
P
(
B
∣
A
)
=
P
(
A
∣
B
)
P
(
B
)
P
(
A
∣
B
)
P
(
B
)
+
P
(
A
∣
B
‾
)
P
(
B
‾
)
P(B|A)=\frac{P(A|B)P(B)}{P(A|B)P(B)+P(A|\overline B)P(\overline B)}
P(B∣A)=P(A∣B)P(B)+P(A∣B)P(B)P(A∣B)P(B)
      \;\\\;
      \;\\\;
独立性
若 P ( B ∣ A ) = P ( B ) P(B|A)=P(B) P(B∣A)=P(B),显然A事件和B事件互不影响,称A与B独立
推得:
- P ( A ) P ( B ) = P ( A B ) P(A)P(B)=P(AB) P(A)P(B)=P(AB)
- 若A与B独立,那么 A ‾ 与 B , B ‾ 与 A , A ‾ 与 B ‾ \overline A与B,\overline B与A,\overline A与\overline B A与B,B与A,A与B独立
区分:
独立是指互不影响,有
P
(
A
B
)
=
P
(
A
)
∗
P
(
B
)
P(AB)=P(A)*P(B)
P(AB)=P(A)∗P(B)
而互斥是指不能同时发生,有
P
(
A
+
B
)
=
P
(
A
)
+
P
(
B
)
P(A+B)=P(A)+P(B)
P(A+B)=P(A)+P(B)
      \;\\\;
      \;\\\;
随机变量
将样本空间S中的所有元素e与一个实数对应,用函数X转换,称X=X(e)为随机变量
例如: 投3次硬币,正面次数为1的有100,010,001,那么X(001)=X(010)=X(001)=1
上述离散型随机变量X的分布律为:P(0)=1,p(1)=3,p(2)=3,p(3)=1,或是写出表格:
X | 0 | 1 | 2 | 3 |
---|---|---|---|---|
P | 1 | 3 | 3 | 1 |
一:(0—1)分布
X | 0 | 1 |
---|---|---|
P | 1-p | p |
二:二项分布
一次伯努利试验相当于01分布,n次就是二项分布
X | k | … |
---|---|---|
P | C n k ∗ p k ∗ ( 1 − p ) n − k C_n^k *p^k*(1-p)^{n-k} Cnk∗pk∗(1−p)n−k | … |
称X服从参数为n,p的二项分布,记作:X~b(n,p)
三:泊松分布
使二项分布的P在 lim n → ∞ \lim_{n\to\infty} limn→∞时,得到一下公式,其中 λ \lambda λ为>0常数
X | k | … |
---|---|---|
P | λ k e − λ k ! \frac{\lambda^{k}e^{-\lambda}}{k!} k!λke−λ | … |
称X服从参数λ的泊松分布,记作:X~ π ( λ ) \pi(λ) π(λ)
分布函数: 对于分布律做一个前缀和即为分布函数,显然有:
P
(
x
1
<
X
<
=
x
2
)
=
P
(
X
<
=
x
2
)
−
P
(
X
<
=
x
1
)
=
F
(
x
2
)
−
F
(
x
1
)
P(x_1<X<=x_2)=P(X<=x_2)-P(X<=x_1)=F(x_2)-F(x_1)
P(x1<X<=x2)=P(X<=x2)−P(X<=x1)=F(x2)−F(x1)
      \;\\\;
      \;\\\;
连续性随机变量及其概率密度
f(x)为概率密度,其前缀和F(x)也叫分布函数(f(x)其实也就是概率而已)
例如: f ( x ) = x / 6 ( 0 < = x < 3 )      = 2 − x 2 ( 3 < = x < = 4 )      = 0 ( o t h e r ) f(x)=x/6 \quad\quad(0<=x<3)\quad\\\quad\quad \qquad\;\;=2-\frac{x}{2}\quad(3<=x<=4)\\\quad\quad \qquad\;\;=0\quad\quad\quad(other) f(x)=x/6(0<=x<3)=2−2x(3<=x<=4)=0(other)
那么: F ( x ) = 0 ( x < 0 ) = ∫ 0 x x / 6 d x     ( 0 < = x < 3 )        = ∫ 0 3 x / 6 d x + ∫ 3 x ( 2 − x 2 ) d x ( 3 < = x < = 4 )        = 1   ( x > 4 ) F(x)=0\quad\qquad\qquad\qquad\qquad\qquad(x<0)\\\qquad\qquad\quad=\int_0^x x/6dx \quad\quad\qquad\qquad\quad\;\,(0<=x<3)\quad\\\quad\quad \qquad\;\;\;=\int_0^3 x/6dx+\int_3^x (2-\frac{x}{2})dx \quad(3<=x<=4)\\\quad\quad \qquad\;\;\;=1\qquad\qquad\qquad\qquad\qquad\quad\,(x>4) F(x)=0(x<0)=∫0xx/6dx(0<=x<3)=∫03x/6dx+∫3x(2−2x)dx(3<=x<=4)=1(x>4)
性质:
- f ( x ) > 0 f(x)>0 f(x)>0
- ∫ − ∞ ∞ f ( x ) d x = 1 \int_{-\infty}^\infty f(x)dx=1 ∫−∞∞f(x)dx=1
- P ( x 1 < x < = x 2 ) = P ( x 1 < = x < x 2 ) = P ( x 1 < = x < = x 2 ) = P ( x 1 < x < x 2 ) P(x_1<x<=x_2)=P(x_1<=x<x_2)=P(x_1<=x<=x_2)=P(x_1<x<x_2) P(x1<x<=x2)=P(x1<=x<x2)=P(x1<=x<=x2)=P(x1<x<x2)
- P ( x 1 < x < = x 2 ) = F ( x 2 ) − F ( x 1 ) = ∫ x 1 x 2 f ( x ) d x P(x_1<x<=x_2)=F(x_2)-F(x_1)=\int_{x_1}^{x_2}f(x)dx P(x1<x<=x2)=F(x2)−F(x1)=∫x1x2f(x)dx
- F ′ ( x ) = f ( x ) F^{'}(x)=f(x) F′(x)=f(x)
- 连续型随机变量 P ( A ) = 0 P(A)=0 P(A)=0不一定A为不可能事件
一:均匀分布
f ( x ) = 1 b − a ( a < x < b )    = 0 ( o t h e r )    → X f(x)=\frac{1}{b-a}\quad (a<x<b)\\ \quad\quad\;=0 \quad\quad(other)\\\;\\\to X f(x)=b−a1(a<x<b)=0(other)→X~ U ( a , b ) U(a,b) U(a,b)
F
(
x
)
=
0
(
x
<
a
)
  
=
x
−
a
b
−
a
(
a
<
=
x
<
b
)
  
=
1
 
(
x
>
=
b
)
F(x)=0\quad\quad(x<a)\\\quad\quad\;=\frac{x-a}{b-a}\quad(a<=x<b)\\\quad\quad\;=1\quad\quad\,(x>=b)
F(x)=0(x<a)=b−ax−a(a<=x<b)=1(x>=b)
二:指数分布
f ( x ) = 1 θ e − x / θ ( x > 0 )    = 0    ( o t h e r )    → X 满 足 参 数 为 θ 的 指 数 分 布 f(x)=\frac{1}{\theta}e^{-x/\theta}\quad (x>0)\\ \quad\quad\;=0 \quad\qquad\;(other)\\\;\\\to X满足参数为\theta的指数分布 f(x)=θ1e−x/θ(x>0)=0(other)→X满足参数为θ的指数分布
F
(
x
)
=
1
−
e
−
x
/
θ
(
x
>
0
)
  
=
0
  
(
o
t
h
e
r
)
F(x)=1-e^{-x/\theta}\quad (x>0)\\ \quad\quad\;=0 \quad\qquad\quad\;(other)
F(x)=1−e−x/θ(x>0)=0(other)
三:正态分布
f ( x ) = 1 2 π σ e − ( x − η ) 2 2 σ 2 ( − ∞ < x < ∞ )    → X f(x)=\dfrac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\eta)^2}{2\sigma^2}}\quad (-\infty<x<\infty)\\\;\\\to X f(x)=2πσ1e−2σ2(x−η)2(−∞<x<∞)→X~ N ( η , σ 2 ) N(\eta,\sigma^2) N(η,σ2)
F ( x ) = 1 2 π σ ∫ − ∞ x e − ( x − η ) 2 2 σ 2 d t ( − ∞ < x < ∞ ) F(x)=\dfrac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^x e^{-\frac{(x-\eta)^2}{2\sigma^2}}dt\quad (-\infty<x<\infty) F(x)=2πσ1∫−∞xe−2σ2(x−η)2dt(−∞<x<∞)
对称轴
x
=
u
x=u
x=u,倾斜度
1
η
\frac{1}{\eta}
η1
当 η = 0 , σ = 1 , 为 标 准 正 态 分 布 : φ ( x ) = 1 2 π e − x 2 / 2 Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 / 2 d t \eta=0,\sigma=1,为标准正态分布:\\\varphi(x)=\dfrac{1}{\sqrt{2\pi}}e^{-x^2/2}\\\Phi(x)=\dfrac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-t^2/2}dt η=0,σ=1,为标准正态分布:φ(x)=2π1e−x2/2Φ(x)=2π1∫−∞xe−t2/2dt
Φ ( − x ) = 1 − Φ ( x ) \Phi(-x)=1-\Phi(x) Φ(−x)=1−Φ(x)
正态分布的引理:
若: X X X~ N ( η , σ 2 ) N(\eta,\sigma^2) N(η,σ2)
F
(
x
)
=
P
(
X
<
=
x
)
=
Φ
(
x
−
η
σ
)
F(x)=P(X<=x)=\Phi(\dfrac{x-\eta}{\sigma})
F(x)=P(X<=x)=Φ(σx−η)
P
(
x
1
<
X
<
x
2
)
=
F
(
x
2
)
−
F
(
x
1
)
=
Φ
(
x
2
−
η
σ
)
−
Φ
(
x
1
−
η
σ
)
P(x_1<X<x_2)=F(x_2)-F(x_1)=\Phi(\dfrac{x_2-\eta}{\sigma})-\Phi(\dfrac{x_1-\eta}{\sigma})
P(x1<X<x2)=F(x2)−F(x1)=Φ(σx2−η)−Φ(σx1−η)
做题时 Φ ( x ) \Phi(x) Φ(x)可以查正数部分表,负数部分可以 Φ ( − x ) = 1 − Φ ( x ) \Phi(-x)=1-\Phi(x) Φ(−x)=1−Φ(x)转化成正数
      \;\\\;
      \;\\\;
随机变量的函数的分布
随机变量X的函数Y:
给出随机变量X的概率密度为 f X ( x ) = x / 8 , ( 0 < x < 4 ) f_X(x)=x/8,(0<x<4) fX(x)=x/8,(0<x<4),求随机变量Y=2X+8的概率密度
F
Y
(
y
)
=
P
{
Y
<
=
y
}
=
P
{
2
X
+
8
<
=
y
}
=
F
X
(
(
y
−
8
)
/
2
)
F_Y(y)=P\{Y<=y\}=P\{2X+8<=y\}=F_X((y-8)/2)
FY(y)=P{Y<=y}=P{2X+8<=y}=FX((y−8)/2)
f
Y
(
y
)
=
F
Y
(
y
)
′
=
f
X
(
(
y
−
8
)
/
2
)
∗
(
(
y
−
8
)
/
2
)
′
=
1
8
(
y
−
8
)
/
2
/
2
,
(
8
<
y
<
16
)
f_Y(y)=F_Y(y)^{'}\\=f_X((y-8)/2)*((y-8)/2)^{'}\\=\frac{1}{8}(y-8)/2/2,(8<y<16)
fY(y)=FY(y)′=fX((y−8)/2)∗((y−8)/2)′=81(y−8)/2/2,(8<y<16)
定理:
可以 a = − ∞ , b = ∞ a=-\infty,b=\infty a=−∞,b=∞
若f(x)在[a,b]单调,不在[a,b]等于0,y=g(x),h(y)为g(x)的反函数,有:
f Y ( y ) = f X ( h ( y ) ) ∗ ∣ h ( y ) ′ ∣ , α < y < β        = 0 , 其 他 f_Y(y)=f_X(h(y))*|h(y)^{'}|,\alpha<y<\beta\\\;\;\;\qquad=0,其他 fY(y)=fX(h(y))∗∣h(y)′∣,α<y<β=0,其他
α = m i n ( g ( a ) , g ( b ) ) , β = m a x ( g ( a ) , g ( b ) ) \alpha=min(g(a),g(b)),\beta=max(g(a),g(b)) α=min(g(a),g(b)),β=max(g(a),g(b))
      \;\\\;
      \;\\\;
二维随机变量
F ( x , y ) = P { X < = x , Y < = y } , 开 口 向 左 下 的 矩 形 F(x,y)=P\{X<=x,Y<=y\},开口向左下的矩形 F(x,y)=P{X<=x,Y<=y},开口向左下的矩形
显然: F ( − ∞ , x ) = F ( x , − ∞ ) = 0 , F ( ∞ , ∞ ) = 1 F(-\infty,x)=F(x,-\infty)=0,F(\infty,\infty)=1 F(−∞,x)=F(x,−∞)=0,F(∞,∞)=1
二维的分布律称为联合分布律
P { ( X , Y ) ∈ G } = ∬ G f ( x , y ) d x d y P\{(X,Y)\in G\}=\iint_Gf(x,y)dxdy P{(X,Y)∈G}=∬Gf(x,y)dxdy
ϑ 2 F ( x , y ) ϑ x ϑ y = f ( x , y ) \dfrac{\vartheta^2F(x,y)}{\vartheta x\vartheta y}=f(x,y) ϑxϑyϑ2F(x,y)=f(x,y)
例题:
若 0 < x < 4 , 0 < y < 6 0<x<4,0<y<6 0<x<4,0<y<6,那么 P { x + y < 4 } = ∫ 0 6 ∫ 0 4 − y f ( x , y ) d x d y P\{x+y<4\}=\int_{0}^6\int_{0}^{4-y }f(x,y)dxdy P{x+y<4}=∫06∫04−yf(x,y)dxdy
      \;\\\;
      \;\\\;
边缘分布
让 Y → ∞ Y\to\infty Y→∞,(X,Y)的分布律就变成了X的分布律
离散型:(边缘分布律)
p
i
⋅
=
∑
j
=
1
∞
p
i
j
p_{i·}=\sum_{j=1}^{\infty}p_{ij}
pi⋅=∑j=1∞pij
p
⋅
j
=
∑
i
=
1
∞
p
i
j
p_{·j}=\sum_{i=1}^{\infty}p_{ij}
p⋅j=∑i=1∞pij
连续型:(边缘概率密度)
f
X
(
x
)
=
∫
−
∞
∞
f
(
x
,
y
)
d
y
f_X(x)=\int_{-\infty}^{\infty}f(x,y)dy
fX(x)=∫−∞∞f(x,y)dy
f
Y
(
y
)
=
∫
−
∞
∞
f
(
x
,
y
)
d
x
f_Y(y)=\int_{-\infty}^{\infty}f(x,y)dx
fY(y)=∫−∞∞f(x,y)dx
计算时,将 − ∞ 和 ∞ -\infty和\infty −∞和∞换成使 f ( x , y ) ̸ = 0 f(x,y)\not=0 f(x,y)̸=0的上下限即可
例如: f ( x , y ) = 6 , x 2 < = y < = x f(x,y)=6 , x^2<=y<=x f(x,y)=6,x2<=y<=x
f X ( x ) = ∫ x 2 x 6 d y = 6 ( x − x 2 ) , ( 0 < = x < = 1 ) f_X(x)=\int_{x^2}^x6dy=6(x-x^2),(0<=x<=1) fX(x)=∫x2x6dy=6(x−x2),(0<=x<=1)
f Y ( y ) = ∫ y y 6 d x = 6 ( y − y ) , ( 0 < = y < = 1 ) f_Y(y)=\int_{y}^{\sqrt{y}}6dx=6(\sqrt{y}-y),(0<=y<=1) fY(y)=∫yy6dx=6(y−y),(0<=y<=1)
      \;\\\;
      \;\\\;
条件分布
P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } = p i j p . j P\{X=x_i|Y=y_j\}=\dfrac{P\{X=x_i,Y=y_j\}}{P\{Y=y_j\}}=\dfrac{p_{ij}}{p_{.j}} P{X=xi∣Y=yj}=P{Y=yj}P{X=xi,Y=yj}=p.jpij
P { X = x i ∣ Y = y j } = p i j p . j , i = 1 , 2 … P\{X=x_i|Y=y_j\}=\dfrac{p_{ij}}{p_{.j}},i=1,2\dots P{X=xi∣Y=yj}=p.jpij,i=1,2…称为 X X X在 Y j Y_j Yj下的条件分布律
公式: f X ∣ Y ( x ∣ y ) = f ( x , y ) / f Y ( y ) f_{X|Y}(x|y)=f(x,y)/f_Y(y) fX∣Y(x∣y)=f(x,y)/fY(y)
      \;\\\;
      \;\\\;
相互独立
公式: f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y)
若 X , Y X,Y X,Y相互独立, F ( X ) , G ( Y ) F(X),G(Y) F(X),G(Y)相互独立
      \;\\\;
      \;\\\;
函数的分步
Z
=
X
+
Y
Z=X+Y
Z=X+Y
f
X
+
Y
(
z
)
=
∫
−
∞
+
∞
f
(
z
−
y
,
y
)
d
y
f_{X+Y}(z)=\int_{-\infty}^{+\infty}f(z-y,y)dy
fX+Y(z)=∫−∞+∞f(z−y,y)dy
f
X
+
Y
(
z
)
=
∫
−
∞
+
∞
f
(
x
,
z
−
y
)
d
x
f_{X+Y}(z)=\int_{-\infty}^{+\infty}f(x,z-y)dx
fX+Y(z)=∫−∞+∞f(x,z−y)dx
Z
=
Y
/
X
Z
=
X
Y
Z=Y/X \quad Z=XY
Z=Y/XZ=XY
f
Y
/
X
(
z
)
=
∫
−
∞
+
∞
∣
x
∣
f
(
x
,
x
z
)
d
x
f_{Y/X}(z)=\int_{-\infty}^{+\infty}|x|f(x,xz)dx
fY/X(z)=∫−∞+∞∣x∣f(x,xz)dx
f
X
Y
(
z
)
=
∫
−
∞
+
∞
1
∣
x
∣
f
(
x
,
z
/
x
)
d
x
f_{XY}(z)=\int_{-\infty}^{+\infty}\frac{1}{|x|}f(x,z/x)dx
fXY(z)=∫−∞+∞∣x∣1f(x,z/x)dx
M
a
x
M
i
n
Max\quad Min
MaxMin
F
m
a
x
(
z
)
=
F
X
(
z
)
F
Y
(
z
)
F_{max}(z)=F_X(z)F_Y(z)
Fmax(z)=FX(z)FY(z)
F
m
i
n
(
z
)
=
1
−
[
1
−
F
X
(
z
)
]
[
1
−
F
Y
(
z
)
]
F_{min}(z)=1-[1-F_X(z)][1-F_Y(z)]
Fmin(z)=1−[1−FX(z)][1−FY(z)]