概率论笔记

样本与事件

样本空间: 随机实验E的所有可能结果的集合S

样本点: 每个可能结果


随机事件: S的所有子集

  1. 基本事件:单个点组成的事件
  2. 必然事件:S本身
  3. 不可能事件:空集

事件之间的关系:

  1. 相等:互相包含
  2. 和事件:A并B
  3. 积事件:A交B
  4. 差事件:A减B
  5. 互斥:积事件为空集
  6. 对立:互斥且和事件为S
          \;\\\;

      \;\\\;
概率性质

  1. 非负:大于等于0
  2. 规范:P(S)=1,P(空集)=0
  3. 可列可加:互斥事件的概率和为其和事件的概率
  4. 容斥:B≥A,则P(B-A)=P(B)-P(A)
  5. 逆事件:AB互逆,P(A)+P(B)=1
  6. 加法:P(A∪B)=P(A)+P(B)-P(AB)
          \;\\\;

      \;\\\;
古典概型

等可能概型,基本事件概率相同

公式: P(A)=K(A中的基本事件数) / N(S中的基本事件数)

此方法可以绕过概率这一说法,变成统计事件的数量

例1:(取球问题)

a个白球,b个红球,k个人不放回得取球,求第i个人取到白球(A)的概率

N:前i个人取球的基本事件数为 ( a + b ) ∗ ( a + b − 1 ) … ( a + b − i + 1 ) (a+b)*(a+b-1)…(a+b-i+1) (a+b)(a+b1)(a+bi+1)
K:前i个人取球第i个人取到白球的概率为 a ∗ ( a + b − 1 ) ∗ … ( a + b − i + 1 ) a*(a+b-1)*…(a+b-i+1) a(a+b1)(a+bi+1)

∴ P ( A ) = a / ( a + b ) \therefore P(A)=a/(a+b) P(A)=a/(a+b)

也就是说,放不放回第i个人取到白球的概率是一样的,当然,i要小于等于a+b

例2:(正品问题)

400件次品,1100件正品,求抽出100件90件为次品的概率

N:抽出100件的事件数为 C 1500 100 C_{1500}^{100} C1500100
K:抽出90件次品的事件数为 C 400 90 C 1100 10 C_{400}^{90}C_{1100}^{10} C40090C110010

∴ P ( A ) = C 400 90 C 1100 10 C 1500 100 \therefore P(A)=\dfrac{C_{400}^{90}C_{1100}^{10}}{C_{1500}^{100}} P(A)=C1500100C40090C110010

      \;\\\;


      \;\\\;
条件概率

P ( A ∣ B ) P(A|B) P(AB)表示在B事件发生的条件下A发生的概率

区别: 求AB同时发生的概率 P ( A B ) P(AB) P(AB);而已知A发生,求B发生的概率 P ( B ∣ A ) P(B|A) P(BA)

公式: P ( A ∣ B ) = P ( A B ) P ( B ) , P ( A B ) = P ( B ) ∗ P ( A ∣ B ) = P ( A ) ∗ P ( B ∣ A ) P(A|B)=\frac{P(AB)}{P(B)},P(AB)=P(B)*P(A|B)=P(A)*P(B|A) P(AB)=P(B)P(AB)P(AB)=P(B)P(AB)=P(A)P(BA)

乘法定理: P ( A 1 A 2 A 3 . . . A n ) = P ( A 1 ) ∗ P ( A 2 ∣ A 1 ) ∗ P ( A 3 ∣ A 1 A 2 ) ∗ . . . P ( A n ∣ A 1 A 2 . . . A n − 1 ) P(A_1A_2A_3...A_n)=P(A_1)*P(A_2|A_1)*P(A_3|A_1A_2)*...P(A_n|A_1A_2...A_{n-1}) P(A1A2A3...An)=P(A1)P(A2A1)P(A3A1A2)...P(AnA1A2...An1)
      \;\\\;


      \;\\\;
全概率公式

划分: B 1 , B 2 . . . B n B_1,B_2...B_n B1,B2...Bn为样本空间 S S S的事件,且交集为S,两两互斥,则称 B 1 , B 2 . . . B n B_1,B_2...B_n B1,B2...Bn S S S的一个划分

公式:(任意事件A)
P ( A ) = P ( A ∣ B 1 ) P ( B 1 ) + . . . P ( A ∣ B n ) P ( B n ) P(A)=P(A|B_1)P(B_1)+...P(A|B_n)P(B_n) P(A)=P(AB1)P(B1)+...P(ABn)P(Bn)

应用: 当直接求A的概率不好求时,可能找到S的一个划分,如果 P ( A ∣ B i ) P(A|B_i) P(ABi) P ( B i ) P(B_i) P(Bi)好求的话


贝叶斯公式

P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) P ( A ∣ B 1 ) P ( B 1 ) + . . . P ( A ∣ B n ) P ( B n ) P(B_i|A)=\frac{P(A|B_i)P(B_i)}{P(A|B_1)P(B_1)+...P(A|B_n)P(B_n)} P(BiA)=P(AB1)P(B1)+...P(ABn)P(Bn)P(ABi)P(Bi)


将上述两个公式的n代为2,则变成:
P ( A ) = P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) P(A)=P(A|B)P(B)+P(A|\overline B)P(\overline B) P(A)=P(AB)P(B)+P(AB)P(B)
P ( B ∣ A ) = P ( A ∣ B ) P ( B ) P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) P(B|A)=\frac{P(A|B)P(B)}{P(A|B)P(B)+P(A|\overline B)P(\overline B)} P(BA)=P(AB)P(B)+P(AB)P(B)P(AB)P(B)

      \;\\\;


      \;\\\;

独立性

P ( B ∣ A ) = P ( B ) P(B|A)=P(B) P(BA)=P(B),显然A事件和B事件互不影响,称A与B独立

推得:

  1. P ( A ) P ( B ) = P ( A B ) P(A)P(B)=P(AB) P(A)P(B)=P(AB)
  2. 若A与B独立,那么 A ‾ 与 B , B ‾ 与 A , A ‾ 与 B ‾ \overline A与B,\overline B与A,\overline A与\overline B ABBAAB独立

区分:

独立是指互不影响,有 P ( A B ) = P ( A ) ∗ P ( B ) P(AB)=P(A)*P(B) P(AB)=P(A)P(B)
而互斥是指不能同时发生,有 P ( A + B ) = P ( A ) + P ( B ) P(A+B)=P(A)+P(B) P(A+B)=P(A)+P(B)

      \;\\\;


      \;\\\;

随机变量

将样本空间S中的所有元素e与一个实数对应,用函数X转换,称X=X(e)为随机变量

例如: 投3次硬币,正面次数为1的有100,010,001,那么X(001)=X(010)=X(001)=1

上述离散型随机变量X的分布律为:P(0)=1,p(1)=3,p(2)=3,p(3)=1,或是写出表格:

X0123
P1331

一:(0—1)分布

X01
P1-pp

二:二项分布

一次伯努利试验相当于01分布,n次就是二项分布

Xk
P C n k ∗ p k ∗ ( 1 − p ) n − k C_n^k *p^k*(1-p)^{n-k} Cnkpk(1p)nk

称X服从参数为n,p的二项分布,记作:X~b(n,p)

三:泊松分布

使二项分布的P在 lim ⁡ n → ∞ \lim_{n\to\infty} limn时,得到一下公式,其中 λ \lambda λ为>0常数

Xk
P λ k e − λ k ! \frac{\lambda^{k}e^{-\lambda}}{k!} k!λkeλ

称X服从参数λ的泊松分布,记作:X~ π ( λ ) \pi(λ) π(λ)


分布函数: 对于分布律做一个前缀和即为分布函数,显然有:
P ( x 1 &lt; X &lt; = x 2 ) = P ( X &lt; = x 2 ) − P ( X &lt; = x 1 ) = F ( x 2 ) − F ( x 1 ) P(x_1&lt;X&lt;=x_2)=P(X&lt;=x_2)-P(X&lt;=x_1)=F(x_2)-F(x_1) P(x1<X<=x2)=P(X<=x2)P(X<=x1)=F(x2)F(x1)

&ThickSpace; &ThickSpace; \;\\\;


&ThickSpace; &ThickSpace; \;\\\;

连续性随机变量及其概率密度

f(x)为概率密度,其前缀和F(x)也叫分布函数(f(x)其实也就是概率而已)

例如: f ( x ) = x / 6 ( 0 &lt; = x &lt; 3 ) &ThickSpace;&ThickSpace; = 2 − x 2 ( 3 &lt; = x &lt; = 4 ) &ThickSpace;&ThickSpace; = 0 ( o t h e r ) f(x)=x/6 \quad\quad(0&lt;=x&lt;3)\quad\\\quad\quad \qquad\;\;=2-\frac{x}{2}\quad(3&lt;=x&lt;=4)\\\quad\quad \qquad\;\;=0\quad\quad\quad(other) f(x)=x/6(0<=x<3)=22x(3<=x<=4)=0(other)

那么: F ( x ) = 0 ( x &lt; 0 ) = ∫ 0 x x / 6 d x &ThickSpace;&ThinSpace; ( 0 &lt; = x &lt; 3 ) &ThickSpace;&ThickSpace;&ThickSpace; = ∫ 0 3 x / 6 d x + ∫ 3 x ( 2 − x 2 ) d x ( 3 &lt; = x &lt; = 4 ) &ThickSpace;&ThickSpace;&ThickSpace; = 1 &ThinSpace; ( x &gt; 4 ) F(x)=0\quad\qquad\qquad\qquad\qquad\qquad(x&lt;0)\\\qquad\qquad\quad=\int_0^x x/6dx \quad\quad\qquad\qquad\quad\;\,(0&lt;=x&lt;3)\quad\\\quad\quad \qquad\;\;\;=\int_0^3 x/6dx+\int_3^x (2-\frac{x}{2})dx \quad(3&lt;=x&lt;=4)\\\quad\quad \qquad\;\;\;=1\qquad\qquad\qquad\qquad\qquad\quad\,(x&gt;4) F(x)=0(x<0)=0xx/6dx(0<=x<3)=03x/6dx+3x(22x)dx(3<=x<=4)=1(x>4)


性质:

  1. f ( x ) &gt; 0 f(x)&gt;0 f(x)>0
  2. ∫ − ∞ ∞ f ( x ) d x = 1 \int_{-\infty}^\infty f(x)dx=1 f(x)dx=1
  3. P ( x 1 &lt; x &lt; = x 2 ) = P ( x 1 &lt; = x &lt; x 2 ) = P ( x 1 &lt; = x &lt; = x 2 ) = P ( x 1 &lt; x &lt; x 2 ) P(x_1&lt;x&lt;=x_2)=P(x_1&lt;=x&lt;x_2)=P(x_1&lt;=x&lt;=x_2)=P(x_1&lt;x&lt;x_2) P(x1<x<=x2)=P(x1<=x<x2)=P(x1<=x<=x2)=P(x1<x<x2)
  4. P ( x 1 &lt; x &lt; = x 2 ) = F ( x 2 ) − F ( x 1 ) = ∫ x 1 x 2 f ( x ) d x P(x_1&lt;x&lt;=x_2)=F(x_2)-F(x_1)=\int_{x_1}^{x_2}f(x)dx P(x1<x<=x2)=F(x2)F(x1)=x1x2f(x)dx
  5. F ′ ( x ) = f ( x ) F^{&#x27;}(x)=f(x) F(x)=f(x)
  6. 连续型随机变量 P ( A ) = 0 P(A)=0 P(A)=0不一定A为不可能事件

一:均匀分布

f ( x ) = 1 b − a ( a &lt; x &lt; b ) &ThickSpace; = 0 ( o t h e r ) &ThickSpace; → X f(x)=\frac{1}{b-a}\quad (a&lt;x&lt;b)\\ \quad\quad\;=0 \quad\quad(other)\\\;\\\to X f(x)=ba1(a<x<b)=0(other)X~ U ( a , b ) U(a,b) U(a,b)

F ( x ) = 0 ( x &lt; a ) &ThickSpace; = x − a b − a ( a &lt; = x &lt; b ) &ThickSpace; = 1 &ThinSpace; ( x &gt; = b ) F(x)=0\quad\quad(x&lt;a)\\\quad\quad\;=\frac{x-a}{b-a}\quad(a&lt;=x&lt;b)\\\quad\quad\;=1\quad\quad\,(x&gt;=b) F(x)=0(x<a)=baxa(a<=x<b)=1(x>=b)
在这里插入图片描述
二:指数分布

f ( x ) = 1 θ e − x / θ ( x &gt; 0 ) &ThickSpace; = 0 &ThickSpace; ( o t h e r ) &ThickSpace; → X 满 足 参 数 为 θ 的 指 数 分 布 f(x)=\frac{1}{\theta}e^{-x/\theta}\quad (x&gt;0)\\ \quad\quad\;=0 \quad\qquad\;(other)\\\;\\\to X满足参数为\theta的指数分布 f(x)=θ1ex/θ(x>0)=0(other)Xθ

F ( x ) = 1 − e − x / θ ( x &gt; 0 ) &ThickSpace; = 0 &ThickSpace; ( o t h e r ) F(x)=1-e^{-x/\theta}\quad (x&gt;0)\\ \quad\quad\;=0 \quad\qquad\quad\;(other) F(x)=1ex/θ(x>0)=0(other)
在这里插入图片描述
三:正态分布

f ( x ) = 1 2 π σ e − ( x − η ) 2 2 σ 2 ( − ∞ &lt; x &lt; ∞ ) &ThickSpace; → X f(x)=\dfrac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\eta)^2}{2\sigma^2}}\quad (-\infty&lt;x&lt;\infty)\\\;\\\to X f(x)=2π σ1e2σ2(xη)2(<x<)X~ N ( η , σ 2 ) N(\eta,\sigma^2) N(η,σ2)

F ( x ) = 1 2 π σ ∫ − ∞ x e − ( x − η ) 2 2 σ 2 d t ( − ∞ &lt; x &lt; ∞ ) F(x)=\dfrac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^x e^{-\frac{(x-\eta)^2}{2\sigma^2}}dt\quad (-\infty&lt;x&lt;\infty) F(x)=2π σ1xe2σ2(xη)2dt(<x<)

在这里插入图片描述
对称轴 x = u x=u x=u,倾斜度 1 η \frac{1}{\eta} η1

η = 0 , σ = 1 , 为 标 准 正 态 分 布 : φ ( x ) = 1 2 π e − x 2 / 2 Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 / 2 d t \eta=0,\sigma=1,为标准正态分布:\\\varphi(x)=\dfrac{1}{\sqrt{2\pi}}e^{-x^2/2}\\\Phi(x)=\dfrac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-t^2/2}dt η=0,σ=1φ(x)=2π 1ex2/2Φ(x)=2π 1xet2/2dt

Φ ( − x ) = 1 − Φ ( x ) \Phi(-x)=1-\Phi(x) Φ(x)=1Φ(x)

正态分布的引理:

若: X X X~ N ( η , σ 2 ) N(\eta,\sigma^2) N(η,σ2)

F ( x ) = P ( X &lt; = x ) = Φ ( x − η σ ) F(x)=P(X&lt;=x)=\Phi(\dfrac{x-\eta}{\sigma}) F(x)=P(X<=x)=Φ(σxη)
P ( x 1 &lt; X &lt; x 2 ) = F ( x 2 ) − F ( x 1 ) = Φ ( x 2 − η σ ) − Φ ( x 1 − η σ ) P(x_1&lt;X&lt;x_2)=F(x_2)-F(x_1)=\Phi(\dfrac{x_2-\eta}{\sigma})-\Phi(\dfrac{x_1-\eta}{\sigma}) P(x1<X<x2)=F(x2)F(x1)=Φ(σx2η)Φ(σx1η)

做题时 Φ ( x ) \Phi(x) Φ(x)可以查正数部分表,负数部分可以 Φ ( − x ) = 1 − Φ ( x ) \Phi(-x)=1-\Phi(x) Φ(x)=1Φ(x)转化成正数

&ThickSpace; &ThickSpace; \;\\\;


&ThickSpace; &ThickSpace; \;\\\;

随机变量的函数的分布

随机变量X的函数Y:

给出随机变量X的概率密度为 f X ( x ) = x / 8 , ( 0 &lt; x &lt; 4 ) f_X(x)=x/8,(0&lt;x&lt;4) fX(x)=x/8,(0<x<4),求随机变量Y=2X+8的概率密度

F Y ( y ) = P { Y &lt; = y } = P { 2 X + 8 &lt; = y } = F X ( ( y − 8 ) / 2 ) F_Y(y)=P\{Y&lt;=y\}=P\{2X+8&lt;=y\}=F_X((y-8)/2) FY(y)=P{Y<=y}=P{2X+8<=y}=FX((y8)/2)
f Y ( y ) = F Y ( y ) ′ = f X ( ( y − 8 ) / 2 ) ∗ ( ( y − 8 ) / 2 ) ′ = 1 8 ( y − 8 ) / 2 / 2 , ( 8 &lt; y &lt; 16 ) f_Y(y)=F_Y(y)^{&#x27;}\\=f_X((y-8)/2)*((y-8)/2)^{&#x27;}\\=\frac{1}{8}(y-8)/2/2,(8&lt;y&lt;16) fY(y)=FY(y)=fX((y8)/2)((y8)/2)=81(y8)/2/2(8<y<16)

定理:

可以 a = − ∞ , b = ∞ a=-\infty,b=\infty a=,b=

若f(x)在[a,b]单调,不在[a,b]等于0,y=g(x),h(y)为g(x)的反函数,有:

f Y ( y ) = f X ( h ( y ) ) ∗ ∣ h ( y ) ′ ∣ , α &lt; y &lt; β &ThickSpace;&ThickSpace;&ThickSpace; = 0 , 其 他 f_Y(y)=f_X(h(y))*|h(y)^{&#x27;}|,\alpha&lt;y&lt;\beta\\\;\;\;\qquad=0,其他 fY(y)=fX(h(y))h(y),α<y<β=0,

α = m i n ( g ( a ) , g ( b ) ) , β = m a x ( g ( a ) , g ( b ) ) \alpha=min(g(a),g(b)),\beta=max(g(a),g(b)) α=min(g(a),g(b)),β=max(g(a),g(b))

&ThickSpace; &ThickSpace; \;\\\;


&ThickSpace; &ThickSpace; \;\\\;

二维随机变量

F ( x , y ) = P { X &lt; = x , Y &lt; = y } , 开 口 向 左 下 的 矩 形 F(x,y)=P\{X&lt;=x,Y&lt;=y\},开口向左下的矩形 F(x,y)=P{X<=x,Y<=y},

显然: F ( − ∞ , x ) = F ( x , − ∞ ) = 0 , F ( ∞ , ∞ ) = 1 F(-\infty,x)=F(x,-\infty)=0,F(\infty,\infty)=1 F(,x)=F(x,)=0,F(,)=1

二维的分布律称为联合分布律

P { ( X , Y ) ∈ G } = ∬ G f ( x , y ) d x d y P\{(X,Y)\in G\}=\iint_Gf(x,y)dxdy P{(X,Y)G}=Gf(x,y)dxdy

ϑ 2 F ( x , y ) ϑ x ϑ y = f ( x , y ) \dfrac{\vartheta^2F(x,y)}{\vartheta x\vartheta y}=f(x,y) ϑxϑyϑ2F(x,y)=f(x,y)

例题:

0 &lt; x &lt; 4 , 0 &lt; y &lt; 6 0&lt;x&lt;4,0&lt;y&lt;6 0<x<4,0<y<6,那么 P { x + y &lt; 4 } = ∫ 0 6 ∫ 0 4 − y f ( x , y ) d x d y P\{x+y&lt;4\}=\int_{0}^6\int_{0}^{4-y }f(x,y)dxdy P{x+y<4}=0604yf(x,y)dxdy

&ThickSpace; &ThickSpace; \;\\\;


&ThickSpace; &ThickSpace; \;\\\;

边缘分布

Y → ∞ Y\to\infty Y,(X,Y)的分布律就变成了X的分布律

离散型:(边缘分布律)
p i ⋅ = ∑ j = 1 ∞ p i j p_{i·}=\sum_{j=1}^{\infty}p_{ij} pi=j=1pij
p ⋅ j = ∑ i = 1 ∞ p i j p_{·j}=\sum_{i=1}^{\infty}p_{ij} pj=i=1pij

连续型:(边缘概率密度)
f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y f_X(x)=\int_{-\infty}^{\infty}f(x,y)dy fX(x)=f(x,y)dy
f Y ( y ) = ∫ − ∞ ∞ f ( x , y ) d x f_Y(y)=\int_{-\infty}^{\infty}f(x,y)dx fY(y)=f(x,y)dx

计算时,将 − ∞ 和 ∞ -\infty和\infty 换成使 f ( x , y ) ̸ = 0 f(x,y)\not=0 f(x,y)̸=0的上下限即可

例如: f ( x , y ) = 6 , x 2 &lt; = y &lt; = x f(x,y)=6 , x^2&lt;=y&lt;=x f(x,y)=6,x2<=y<=x

f X ( x ) = ∫ x 2 x 6 d y = 6 ( x − x 2 ) , ( 0 &lt; = x &lt; = 1 ) f_X(x)=\int_{x^2}^x6dy=6(x-x^2),(0&lt;=x&lt;=1) fX(x)=x2x6dy=6(xx2),(0<=x<=1)

f Y ( y ) = ∫ y y 6 d x = 6 ( y − y ) , ( 0 &lt; = y &lt; = 1 ) f_Y(y)=\int_{y}^{\sqrt{y}}6dx=6(\sqrt{y}-y),(0&lt;=y&lt;=1) fY(y)=yy 6dx=6(y y),(0<=y<=1)

&ThickSpace; &ThickSpace; \;\\\;


&ThickSpace; &ThickSpace; \;\\\;

条件分布

P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } = p i j p . j P\{X=x_i|Y=y_j\}=\dfrac{P\{X=x_i,Y=y_j\}}{P\{Y=y_j\}}=\dfrac{p_{ij}}{p_{.j}} P{X=xiY=yj}=P{Y=yj}P{X=xi,Y=yj}=p.jpij

P { X = x i ∣ Y = y j } = p i j p . j , i = 1 , 2 … P\{X=x_i|Y=y_j\}=\dfrac{p_{ij}}{p_{.j}},i=1,2\dots P{X=xiY=yj}=p.jpiji=1,2称为 X X X Y j Y_j Yj下的条件分布律


公式: f X ∣ Y ( x ∣ y ) = f ( x , y ) / f Y ( y ) f_{X|Y}(x|y)=f(x,y)/f_Y(y) fXY(xy)=f(x,y)/fY(y)

&ThickSpace; &ThickSpace; \;\\\;


&ThickSpace; &ThickSpace; \;\\\;

相互独立

公式: f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y)

X , Y X,Y X,Y相互独立, F ( X ) , G ( Y ) F(X),G(Y) F(X),G(Y)相互独立

&ThickSpace; &ThickSpace; \;\\\;


&ThickSpace; &ThickSpace; \;\\\;

函数的分步

Z = X + Y Z=X+Y Z=X+Y
f X + Y ( z ) = ∫ − ∞ + ∞ f ( z − y , y ) d y f_{X+Y}(z)=\int_{-\infty}^{+\infty}f(z-y,y)dy fX+Y(z)=+f(zy,y)dy
f X + Y ( z ) = ∫ − ∞ + ∞ f ( x , z − y ) d x f_{X+Y}(z)=\int_{-\infty}^{+\infty}f(x,z-y)dx fX+Y(z)=+f(x,zy)dx

Z = Y / X Z = X Y Z=Y/X \quad Z=XY Z=Y/XZ=XY
f Y / X ( z ) = ∫ − ∞ + ∞ ∣ x ∣ f ( x , x z ) d x f_{Y/X}(z)=\int_{-\infty}^{+\infty}|x|f(x,xz)dx fY/X(z)=+xf(x,xz)dx
f X Y ( z ) = ∫ − ∞ + ∞ 1 ∣ x ∣ f ( x , z / x ) d x f_{XY}(z)=\int_{-\infty}^{+\infty}\frac{1}{|x|}f(x,z/x)dx fXY(z)=+x1f(x,z/x)dx

M a x M i n Max\quad Min MaxMin
F m a x ( z ) = F X ( z ) F Y ( z ) F_{max}(z)=F_X(z)F_Y(z) Fmax(z)=FX(z)FY(z)
F m i n ( z ) = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ] F_{min}(z)=1-[1-F_X(z)][1-F_Y(z)] Fmin(z)=1[1FX(z)][1FY(z)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值