为什么 2 \sqrt{2} 2不能用有理数表示
有理数的定义
{
x
∣
x
=
q
p
,
p
≠
0
,
p
和
q
的
最
大
公
约
数
为
1
}
\{x|x=\frac{q}{p},p\neq0,p和q的最大公约数为1\}
{x∣x=pq,p=0,p和q的最大公约数为1}.
如果
2
\sqrt{2}
2可以用有理数表示, 那么就意味着
q
p
=
2
\frac{q}{p}=\sqrt{2}
pq=2.
我们把等号两边同时平方,就可以得到
q
2
p
2
=
2.
\frac{q^2}{p^2}=2.
p2q2=2.
此时我们可以得到
q
2
=
2
p
2
q^2=2p^2
q2=2p2, 即
q
2
q^2
q2是一个偶数. 我们已知,偶数的平方是偶数,奇数的平方是奇数. 因此我们可以得到
q
q
q是偶数的结论, 即
q
=
2
q
′
.
q=2q'.
q=2q′.
我们把这个结果代回去就可以得到
4
q
′
2
p
2
=
2
,
\frac{4q'^2}{p^2}=2,
p24q′2=2,
同样我们可以得到
p
2
=
2
q
′
2
.
p^2=2q'^2.
p2=2q′2.
此时我们又可以得到
p
2
p^2
p2是偶数, 以及
p
p
p是偶数.
至此我们发现
p
p
p和
q
q
q都是偶数, 即都可以被2整除. 这是一个非常糟糕的结论, 因为他们有一个公约数为2, 与最大公约数为1的条件矛盾. 因此
2
\sqrt{2}
2不能用有理数表示.