1. 求下列函数的二阶导数
- y = cos 2 x ⋅ ln x y=\cos^2x\cdot\ln x y=cos2x⋅lnx
- y = x 1 − x 2 y=\frac{x}{\sqrt{1-x^2}} y=1−x2x
- y = 1 − x 1 + x y=\frac{1-x}{1+x} y=1+x1−x
- { x = a cos 3 t y = a sin 3 t \Big\{\begin{matrix}x=a\cos^3t\\y=a\sin^3t\end{matrix} { x=acos3ty=asin3t
- { x = ln 1 + t 2 y = arctan t \Big\{\begin{matrix}x=\ln\sqrt{1+t^2}\\y=\arctan t\end{matrix} { x=ln1+t2y=arctant
- { x = t − sin t y = 1 − cos t 0 ⩽ t ⩽ 2 π \Big\{\begin{matrix}x=t-\sin t\\y=1-\cos t\end{matrix}\quad 0\leqslant t\leqslant2\pi { x=t−sinty=1−cost0⩽t⩽2π
2. 求切线方程
- 求曲线 { x = 2 e t y = e − t \Big\{\begin{matrix}x=2e^t\\y=e^{-t}\end{matrix} { x=2ety=e−t ,在 t = 0 t=0 t=0相应的点处的切线方程。
- 已知 f ( x ) f(x) f