图像分割论文:Beyond CNNs: Exploiting Further Inherent Symmetries in Medical Images for Segmentation

该论文提出当前CNN方法在医疗图像分割中的局限性,仅利用平移不变性,忽视旋转和反射等对称性。通过设计基于核的等变操作和具有层对称约束的特殊层,解决这一问题。提出的群等边分割CNN模型能更好地捕获图像对称性,提高分割网络的权重分担和表达能力,减少边缘划分错误。实验结果与最新方法对比,显示了改进的效果。
摘要由CSDN通过智能技术生成

图像分割论文:Beyond CNNs: Exploiting Further Inherent Symmetries in Medical Images for Segmentation

Auther: Shuchao Pang, Institution:Macquarie University, Publish year: 2020
论文地址:https://arxiv.org/abs/2005.03924

Key point:

提出了目前CNN-based方法的局限性:CNN只能利用平移不变性,而忽略了医学图像中存在的旋转,反射等固有对称性。
首先在每个方向上设计了基于kernel的等变操作,解决现有方法中学习对称性的不足,其次,设计了具有层对称约束的特殊层以保持分割网络的全局等价性。

面临的挑战

  • 肿瘤和周围组织表现出相似的对比度
  • 不同患者肿瘤的位置、大小、数目均不可预测
  • 不同患者肿瘤的强度不同
  • 训练数据有限,在像素级标注中很容易存在问题
  • 常规CNN存在的问题
    在这里插入图片描述
    Fig1 Regu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值