数据分析
J-JunLiang
一个热爱挖掘的数据从业者,勤学好问、动手达人,公仔厂的一位码农,期待与大家一起交流探讨机器学习相关内容~
展开
-
数据分析系列:Z 检验和 T 检验的应用及代码实现
原创J数据科学家联盟4天前目录 0前言 1 Z 检验 1.单样本 Z 检验 2.双样本 Z 检验 2 T 检验 1.单样本 T 检验 2.双样本 T 检验 3 比例检验 1.单比例检验 2.双比例检验 4 总结 1. Z 分布和 T 分布 2. Z 检验和 T 检验的区别 0x00 前言均值对比是数据分析中最重要的内...原创 2020-07-02 20:02:39 · 3698 阅读 · 0 评论 -
(补基础)数据分析系列:假设检验的基础知识
JunLiang数据科学家联盟目录: 0x00 前言 0x01 基本思想 0x02 检验方向 拒绝域(拒绝域是由显著性水平围成的区域) 1.双尾检验 2.单尾检验 0x03 一类错误和二类错误 0x04 假设检验的步骤 0x0FF 总结 0x00 前言我们经常会遇到这样的问题: 在ABTest中,怎么衡量实验结果是否显著?置信度是多少? 两组销售数据,如何判断一组...原创 2020-06-17 15:41:02 · 9610 阅读 · 0 评论 -
《硅谷增长黑客实战笔记》我的增长黑客旅程 学习总结
作者:jlianghttps://blog.csdn.net/jliang31.增长经理的职责1)搭建数据基础设施,定义增长目标,提供用户洞察,排序增长项目,设计并上线实验。将原先各自为政的产品开发和营销智能有机整合起来。2)传统产品经理与增长产品经理的区别(1)传统产品经理负责产品开发流程,他们更多的是以解决方案为导向;(2)增长产品经理,虽然遵循类似的流程,来上线功能或...原创 2019-04-11 20:25:04 · 2162 阅读 · 0 评论 -
《硅谷增长黑客实战笔记》我的制定增长作战计划 学习总结
作者:jlianghttps://blog.csdn.net/jliang31.制定增长作战计划1)增长成功的秘诀不在于同时做很多事,而在于找到目前影响增长率的最关键的那一两件事。找到“做什么”和“怎么做”比“做”本身要重要得多。2)增长作战计划的关键(1)方向标:北极星指标(2)路线图:增长模型(3)仪表盘:关键指标看板(定量数据)(4)参考书:用户心理决策...原创 2019-04-18 10:14:55 · 970 阅读 · 0 评论 -
《数据驱动 从方法到实践》之 数据驱动的环节 学习总结
1.内容简介本书是从理论到实践的全面且细致的企业数据驱动指南,完整还原作者在百度大数据工作从零到一构建百度用户行为大数据处理平台的经历。详解大数据本质、理念与现状,围绕数据驱动四环节—采集、建模、分析、指标,深入浅出地讲述企业如何将数据驱动方案落地,并指出数据驱动的价值在于“数据驱动决策”、“数据驱动产品智能”。最后通过互联网金额、电子商务、企业服务、零售四大行业实践,从需求梳理、事件指标设计、...原创 2019-05-25 17:48:44 · 3350 阅读 · 0 评论 -
《数据驱动 从方法到实践》 之数据驱动产品和运营决策 学习总结
1.数据驱动运营监控1)创业公司需要关注的指标:Acquisition(触达)、Activation(激活)、Retention(留存)、Referral(引荐)、Revenue(营收),简称AARRR。2)用户获取(Acquisition)(1)衡量各渠道ROI是重中之重,甄选出最优渠道才能实现营销资源和营销渠道的把控。(2)通过用户行为数据分析,可以科学评估数字营销各渠道...原创 2019-05-29 12:57:31 · 3309 阅读 · 0 评论 -
卡方检验学习总结
1.卡方检验概念1)卡方检验是一种用途很广的计数资料的假设检验方法,由卡尔·皮尔逊提出。(1)它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。(2)其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。(3)卡方值描述两个事件的独立性或者描述实际观察值与期望值的偏离程度。卡方值越大,表名实际观察值与期望值偏离越大,也...原创 2019-07-11 21:34:57 · 24982 阅读 · 1 评论