i5

;;;;;;;;;-------------------
iK7VUYG0yF6lS3QNNmW4Gw==
tRymiHsi9AbQPqtubC1YIaKL1kyJvoGl
uk29oXxJxAg+D0WGWLg/LUewvcz+6kyXvv1h86EN57g=
eIWSkIow/vo+D0WGWLg/LUewvcz+6kyXvv1h86EN57g=
pcL609R3Qxw+D0WGWLg/LUewvcz+6kyXvv1h86EN57g=
VFd7faYIrfo+D0WGWLg/LUewvcz+6kyXvv1h86EN57g=
hdnUs2PSZZk+D0WGWLg/LUewvcz+6kyXIUKemvXcM+bajntYSy7OzQ==
8X08Owc2m1g=
sw2hqZ1O40Iw+42mWeXJDA==
zLT5ja8oOUF+HDYzHfk2YQ==
6MJcF9CLnu1OnNJSBZXXrvF9PDsHNptY
7CZM/lcVkC25IP8uqhBYZA==
8X08Owc2m1g=
sd5ni2KPKr7/2IbUyubw+WHTIHXa2oCC
1VuwU7Ca+VofxG3zqVpDUjxWfmk5YAuQGlz1Wdi6UtZDegultlzydaYmPJLBk/ud
/IWqHYAevm3jCs6HcHo4ubRRdwyvcNvFdnb8AkiU8IvIT/ieQYgZ0vLIQgOzRFd+arX/i5wY5pw=
1VuwU7Ca+VofxG3zqVpDUjxWfmk5YAuQGlz1Wdi6UtZDegultlzydaYmPJLBk/ud
u14gpp1l2a2abU1YLx/nESdyue2AL1qf4v4VAjw7imz1yQ0djKuIW5iBPHTf5Lfie9CT55CC6CmvFZlIE9tu+g==
1VuwU7Ca+Vrgg1S1xl0VVetjw9UgSL+tAvez1mvtkmmuUjbf/Nfj6BoxMEPCK0ZK
y2cykdPczujL0SkHceNcWZY0POlkpCmEereZcc7USYBriaF4LXTeTmzFLlSb4uDTGlz1Wdi6UtZDegultlzydaYmPJLBk/ud
1VuwU7Ca+Vrgg1S1xl0VVetjw9UgSL+tAvez1mvtkmmuUjbf/Nfj6BoxMEPCK0ZK
Uq/qvlRxrA04e6LgOn3woWZTLnEKR1inyGG5WeXdxOwqc28P4RBD0/LIQgOzRFd+arX/i5wY5pw=
1VuwU7Ca+VrK3eWUcqTEhL9yfIc4PBXHQ3oLpbZc8nWmJjySwZP7nQ==
paAYhcLO/idCECACGA7P/mYOCTtpRMsAyGG5WeXdxOwqc28P4RBD0/LIQgOzRFd+arX/i5wY5pw=
W5xG2sm4k1AnOagj/j55JER2MxyABu0hyGG5WeXdxOwqc28P4RBD0/LIQgOzRFd+arX/i5wY5pw=
1VuwU7Ca+VrK3eWUcqTEhL9yfIc4PBXHQ3oLpbZc8nWmJjySwZP7nQ==
Kxs44g3XwE+Kd1Z+BCKrr048mtE/eqv6VR5tgPsmZXtwUHnyfTSUV0vrnCxL0u8acfeisclJ61HxfTw7BzabWA==
8X08Owc2m1g=
8X08Owc2m1g=
vg0oMbTpzD6lS3QNNmW4Gw==
Ob5KgKZP0/n0Ua03i78/6g==
0blF7TEn4P49sFVwfh8/tg==
EwC/dfa1u1w+D0WGWLg/LUewvcz+6kyXxxY6uw84BjJc5ZHWpVmoRtjkduSAQf7M
8X08Owc2m1g=
1jsPvt0yQ37mhbtShw5hyA==
phhqht8YJC9CPjshQHbdhqPUqkyIQOkzJUXr2uAHQnckAoMjZEmsqwJ/nF7AYRSeTR6z4D2gXYVLwqipabmWX56VGGIF4V6M
f8iup4fb80BCPjshQHbdhqPUqkyIQOkznoIq7gRVMXyOd0Q5odcsj3zQHGFhghixa80IVGBWR7PEBFr4n1QTk4S12+tFNZJZ
PVmb9BMAeJJCPjshQHbdhqPUqkyIQOkz7wts7rY2uD+Od0Q5odcsj3zQHGFhghixPF8/vCAy2TxbUwgum04BmAcP9sfr2ExFifY2cLM9BwU=
8X08Owc2m1g=
hpyOdo9yR289SlZLyFgMhA==
8X08Owc2m1g=
QwSCT0HRcPAJNtOSY6LL5A==
;;;;;;;;;-------------------

内容概要:该论文聚焦于6G通信中20-100GHz频段的电磁场(EMF)暴露评估问题,提出了一种基于自适应可重构架构神经网络(RAWA-NN)的预测框架。该框架通过集成权重分析模块和优化模块,能够自动优化网络超参数,显著减少训练时间。模型使用70%的前臂数据进行训练,其余数据用于测试,并用腹部和股四头肌数据验证模型泛化能力。结果显示,该模型在不同参数下的相对差异(RD)在前臂低于2.6%,其他身体部位低于9.5%,可有效预测皮肤表面的温升和吸收功率密度(APD)。此外,论文还提供了详细的代码实现,涵盖数据预处理、权重分析模块、自适应优化模块、RAWA-NN模型构建及训练评估等内容。 适合人群:从事电磁兼容性研究、6G通信技术研发以及对神经网络优化感兴趣的科研人员和工程师。 使用场景及目标:①研究6G通信中高频段电磁暴露对人体的影响;②开发更高效的电磁暴露评估工具;③优化神经网络架构以提高模型训练效率和预测精度。 其他说明:论文不仅提出了理论框架,还提供了完整的代码实现,方便读者复现实验结果。此外,论文还讨论了未来的研究方向,包括扩展到更高频段(如300GHz)的数据处理、引入强化学习优化超参数、以及实现多物理场耦合的智能电磁暴露评估系统。建议读者在实际应用中根据具体需求调整模型架构和参数,并结合真实数据进行验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值