LeetCode 32. Longest Valid Parentheses(最长有效括号)

3 篇文章 0 订阅
2 篇文章 0 订阅

原题网址:https://leetcode.com/problems/longest-valid-parentheses/

Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring.

For "(()", the longest valid parentheses substring is "()", which has length = 2.

Another example is ")()())", where the longest valid parentheses substring is "()()", which has length = 4.

方法:用from来表示当前有效的开始点,即一旦出现根本无法匹配的情况,from将向前推进。用栈来保存左括号的坐标,每配对成功一个就出栈一个。

public class Solution {
    public int longestValidParentheses(String s) {
        int[] stack = new int[s.length()];
        int size = 0;
        int max = 0;
        int from = 0;
        for(int i=0; i<s.length(); i++) {
            if ('(' == s.charAt(i)) stack[size++] = i;
            else if (size==0) from = i+1;
            else {
                int p = stack[--size];
                if (size==0) {
                    max = Math.max(max, i-from+1);
                } else {
                    max = Math.max(max, i-stack[size-1]);
                }
            }
        }
        return max;
    }
}

另一种实现:

public class Solution {
    public int longestValidParentheses(String s) {
        char[] sa = s.toCharArray();
        int[] pos = new int[sa.length+1];
        int max = 0;
        int size = 0;
        pos[size++] = -1;
        for(int i=0; i<sa.length; i++) {
            if (sa[i] == '(') {
                pos[size++] = i;
            } else if (size > 1) {
                size --;
                max = Math.max(max, i-pos[size-1]);
            } else {
                pos[0] = i;
            }
        }
        return max;
    }
}

另一种实现:

public class Solution {
    public int longestValidParentheses(String s) {
        char[] sa = s.toCharArray();
        int[] stack = new int[sa.length];
        int size = 0;
        int from = 0;
        int max = 0;
        for(int i = 0; i < sa.length; i++) {
            if (sa[i] == '(') {
                stack[size++] = i;
            } else if (size == 0) {
                from = i + 1;
            } else if (size == 1) {
                max = Math.max(max, i - from + 1);
                size--;
            } else {
                size--;
                max = Math.max(max, i - stack[size - 1]);
            }
        }
        return max;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值