- 博客(139)
- 问答 (4)
- 收藏
- 关注
原创 树莓派上部署YOLOv5:从零实现实时目标检测
本教程详细讲解如何在树莓派4B上部署YOLOv5目标检测算法,提供完整的实现方案。内容包括:环境配置指南(Python3.7、PyTorch1.8.1等依赖安装)、性能优化技巧(帧率提升200%+)、完整代码示例及实际效果演示。使用树莓派4B(4GB)+YOLOv5s模型作为演示平台,方法适用于其他型号。所需准备:树莓派4B、16GB TF卡、摄像头模块和基础Linux知识。教程从系统环境搭建开始,最终通过运行detect.py实现目标检测功能,为嵌入式设备上的AI应用提供实用解决方案。
2026-01-25 18:55:31
67
原创 树莓派4B安装pytorch
本文介绍了在树莓派4B(ARM架构)上安装PyTorch的详细步骤。首先需要确认系统环境,然后通过百度网盘提供的PyTorch 1.8.1和1.3.0版本(适配Python 3.7)进行安装。若遇到numpy版本不兼容错误,建议使用网盘中的numpy 1.21.4版本解决。最后通过Python导入torch模块验证安装是否成功。文中提供了完整的百度网盘资源链接和提取码(yypn)供下载使用。
2026-01-22 19:58:49
30
原创 使用Flask在本地调用树莓派摄像头
本文介绍了在Windows 11系统下远程调用树莓派USB摄像头的方法。首先需要在树莓派上运行一个Flask服务(video_stream.py),该服务通过OpenCV捕获摄像头画面并以MJPEG格式提供视频流。文中提供了完整的Python代码,包括摄像头初始化、帧生成和HTTP服务实现。启动服务后,可通过浏览器访问树莓派IP地址查看实时画面。同时给出了在本地电脑使用OpenCV接收视频流的客户端代码,通过requests库获取视频流并使用OpenCV显示。文中还包含了错误处理和调试提示,如检查摄像头连接
2026-01-22 18:33:28
321
原创 树莓派4B连接无线
本文介绍在Windows 11系统下为树莓派配置无线连接的方法:1)在SD卡boot分区创建wpa_supplicant.conf文件配置WiFi信息;2)可选创建ssh文件启用远程连接;3)插入树莓派通电后等待连接;4)可通过路由器后台查看设备连接状态,或使用MobaXterm通过默认主机名raspberrypi.local(用户名pi,密码raspberry)进行SSH连接验证。该方法无需显示器即可完成树莓派的无线网络配置。
2026-01-22 17:46:26
330
原创 BLIP代码解析
本文解析了BLIP模型的核心代码,重点介绍了图像描述生成任务的推理过程。模型使用ViT网络提取图像特征,通过BERT解码器生成文本描述。文章详细讲解了两种生成策略:随机采样(核采样)和确定性束搜索,分析了各自的优缺点。在推理阶段,模型将图像特征与提示词"a picture of"结合,经过解码和后处理得到最终描述。文章还提供了代码实现细节,包括图像特征提取、注意力机制、token处理等关键步骤,并展示了实际生成效果示例。
2025-12-22 11:54:26
680
原创 基于深度学习的人脸表情识别(附代码)
本文介绍了一个基于深度学习的人脸表情识别系统。该系统采用YOLO进行人脸检测,并使用Mobilenet或ResNet等网络进行表情分类。数据集包含5种表情(愤怒、恐惧、快乐、悲伤、惊讶),共18000张训练图片和2000张测试图片。训练过程支持GPU加速,通过30个epoch的冻结训练和100个epoch的完整训练,最终准确率达到91%。系统提供多种测试功能,包括单独的表情识别、人脸检测+表情识别、准确率评估和特征可视化。所有训练日志和模型都保存在logs文件夹中,并支持TensorBoard可视化监控训练
2025-12-19 01:14:15
629
原创 Bert论文解析与示例代码
BERT是一种基于多层双向Transformer的预训练语言模型,采用两阶段训练模式:先在大规模无标注数据上通过掩码语言模型等任务进行预训练,再针对具体任务微调。其核心创新在于双向注意力机制(与GPT的单向机制不同)和统一的输入设计(通过[CLS]和[SEP]标记兼容单/双文本任务)。模型提供Base(12层/768维/1.1亿参数)和Large(24层/1024维/3.4亿参数)两种规格。预训练时采用15%随机掩码策略(含80%替换、10%随机词、10%保留原词),既避免模型"作弊"又
2025-12-04 00:03:35
978
原创 YOLOV8车辆重识别
本项目基于YOLOv8和ResNet实现了车辆重识别系统升级,在检测速度和精度上均有显著提升。系统支持三大核心功能:重识别训练、跨视频检测和可视化GUI界面。开发环境采用OpenCV、PyTorch、PyQt5等技术栈搭建,包含完整的深度学习框架和可视化工具包。项目提供有偿技术支持服务,包含技术指导和效果展示,适用于智能交通监控等应用场景。
2025-11-26 22:57:32
197
原创 大模型+目标检测+手部关键点检测:让AI看懂世界,为你讲述万物之美
本文介绍了一种融合大模型与视觉识别技术的人机交互系统,通过目标检测(YOLO)、手部关键点识别和BLIP大模型,实现AI对世界的智能描述。用户可通过手势圈选特定区域,系统会实时分析并生成语音描述(如"手机屏幕上显示着一只猫"),还能自定义描述细节。该技术方案实现了"视觉理解-语言生成-语音输出"的完整交互闭环,源代码支持有偿获取。
2025-10-15 18:25:27
258
原创 使用BLIP训练自己的数据集(图文描述)
本文介绍了基于COCO格式制作小型犬类图像数据集的完整流程。首先创建包含annotations和images的标准文件夹结构,图像需按"名称_索引.jpg"格式命名。通过CSV文件存储图像ID、描述文本和数据集划分信息,经脚本转换生成5个关键JSON文件,包括训练集、验证集和测试集。配置YAML文件指定路径和训练参数后,使用BLIP模型进行3个epoch的微调训练,并输出BLEU、METEOR等评估指标。最终模型权重和预测结果保存在output目录,可通过修改demo.py进行测试,为每
2025-09-18 16:37:42
795
1
原创 基于YOLOV8的垃圾分类回收(含GUI界面和源代码)
本项目基于YOLOv8算法开发了一套智能垃圾分类系统,可自动识别30类生活垃圾并判断其所属类别(厨余/可回收/其他)。系统支持垃圾检测、分类、自定义数据集训练、模型剪枝和GUI可视化功能,已实现图像和视频检测能力。实验数据显示,YOLOv8n和YOLOv8s模型在测试集上的mAP50分别达到0.403和0.433,包含香蕉、易拉罐、塑料瓶等常见垃圾的识别。该系统通过自动化技术提升垃圾分类精度,为改善废弃物管理提供解决方案。注:本项目需付费使用。
2025-08-12 12:53:19
459
原创 YOLOv8通道剪枝,实现轻量化网络,可训练自己数据集(附代码)
本项目基于YOLOv8框架实现了一套完整的通道剪枝方案,通过评估通道重要性、结构化剪枝和微调训练三个步骤优化网络。实验表明,在YOLOv8n模型上剪枝40%后,参数量从301万降至251万,mAP从83.5%提升至94.3%。该方案支持自定义剪枝比例,适用于移动端部署等资源受限场景,核心代码通过自动识别卷积层、批归一化层及相关运算实现高效剪枝。
2025-08-10 22:31:37
476
原创 YOLOv8算法改进--通过yaml文件添加注意力机制【附代码】
本文介绍了一种无需安装ultralytics库即可实现YOLOv8算法改进的方法,以添加注意力机制为例。通过修改yolov8.yaml文件,在主干网络中加入SE_Block注意力模块,替换原有的C2f层。SE_Block包含平均池化和全连接层,通过通道注意力增强特征表示。训练结果显示网络第九层成功添加了注意力机制,模型包含217层、约933万参数。该方法为有偿提供的技术方案,简化了YOLOv8的改进流程。
2025-08-10 17:50:49
221
原创 YOLOv11 Reid(附代码,行人重识别)
摘要:该项目基于YOLOv11+ReID技术开发了行人重识别系统,支持通过穿着、体貌等特征在监控视频中追踪特定人员,适用于犯罪嫌疑人检索、走失儿童寻找等场景。系统功能包括ReID模型训练、人员标注、行人重识别和GUI界面操作。支持多种主干网络(如ResNet50、SE-ResNeXt50等),提供冻结训练、断点续训等模式,并可通过TensorBoard可视化训练过程。用户可通过GUI界面进行目标标注和检索,系统会自动保存检测结果。该项目需在指定Python环境下运行,完整代码有偿提供。
2025-08-09 13:02:48
1358
原创 深度学习指导(可指导理论、代码、项目、论文)
提供从理论指导到代码实现的全程科研支持(重识别、人脸系列、目标检测、分类网络、综合项目、deepseek),支持定制化项目开发。
2025-08-09 10:07:53
661
原创 梯度反转【附代码】
梯度反转,顾名思义就是在神经网络反向传播过程中,通过反转特定路径上梯度的符号(并可能缩放),迫使网络的一部分参数更新方向与另一部分组件期望的方向相反的技术,常用于对抗训练以学习鲁棒或不变的特征表示。
2025-07-02 13:37:27
989
原创 基于深度学习的情感分析(附代码)
为什么一条简单的商品评论,AI就能判断用户是喜欢还是厌恶?社交媒体上的海量文本数据,如何快速洞察用户情绪倾向?情感分析(Sentiment Analysis)作为自然语言处理(NLP)的核心任务之一,正在电商、舆情监控、智能客服等领域发挥巨大作用。本文将针对初学者,带你用深度学习技术构建情感分析模型(实现正负面情绪的分析),涵盖数据预处理、模型搭建、训练流程,并提供完整的PyTorch代码实现。
2025-05-31 10:55:30
1758
原创 基于 DeepSeek 构建智能语音聊天机器人
本文将深入探讨如何利用 DeepSeek 实现一个具备语音识别、自然语言处理的智能语音聊天机器人。
2025-03-16 00:38:56
1663
原创 红外场景下行人重识别【附代码,可做跨视频人员检测】
本项目实现了基于红外场景下的行人重识别,主要利用了算法和技术。相较于可见光场景,红外场景具有不受光照影响、可穿透烟雾等优势,在安防监控、智能交通等领域具有广泛应用前景。然而,红外图像分辨率低、细节信息缺失等特点也为行人重识别带来了巨大挑战。本项目针对红外场景特点,对YOLO和ReID算法进行了改进和优化,有效提升了红外场景下行人重识别的准确率和鲁棒性。
2025-03-14 22:06:37
909
原创 DeepSeek + 知识库:定制你的专属“AI专家”,快速解决专业问题!小白也能秒变“知识达人”!
你是否遇到过这些问题?面对海量的专业资料,找不到重点,头大如斗?需要快速解决某个领域的问题,却不知道从哪里开始?企业内部流程繁琐,员工总是反复问同样的问题?想搞科研,但学科交叉太难,找不到合适的切入点和资源?
2025-03-11 19:49:22
1078
原创 stable diffusion Webui部署记录
(关于环境的安装:先删除req.txt文件中的torch,然后用pip镜像安装,这些依赖安装完毕后,再安装离线的torch,然后再双击webui-user.bat)将需要的权重放在models下面。
2025-03-08 01:33:00
367
原创 基于深度学习的绘画风格迁移系统(附代码)
在人工智能的推动下,艺术创作正迎来前所未有的变革。风格迁移(Style Transfer)作为计算机视觉领域的一项经典技术,使我们能够在保留原始图像内容的同时,赋予其另一幅画作的独特艺术风格。无论是梵高的《星空》、莫奈的《睡莲》,还是毕加索的立体主义作品,风格迁移都能让普通照片焕发艺术光彩,化身为风格独特的艺术作品。在这篇博客中,我们实现了一个 风格迁移 Demo,旨在为初学者和毕业设计提供一个易于上手的学习案例,并附上代码,方便大家理解和实践。
2025-03-03 18:34:08
640
原创 DeepSeek与llama本地部署(含WebUI)
DeepSeek从2025年1月起开始火爆,成为全球最炙手可热的大模型,各大媒体争相报道。我们可以和文心一言一样去官网进行DeepSeek的使用,那如果有读者希望将大模型部署在本地应该怎么做呢?本篇文章将会教你如何在本地傻瓜式的部署我们的deepseek,即便你是文科生也可以做到,不会涉及代码编程,只需要一些命令。我笔记本:2019款拯救者,windows 10;内存8G,CPU:intel 9th i5;GPU:NVIDIA 1650 4G,256G固态+1T机械硬盘。LLama3.2大。
2025-02-05 14:43:29
4087
原创 校园安防系统(用于实现跟踪特定的陌生人并语音报警、跨视频检测、生成人员轨迹路线)
校园安全已成为社会各界关注的焦点。然而,随着校园开放性的增强和人员流动性的加大,如何有效防范陌生人的非法入侵,确保师生安全,成为了一个亟待解决的难题。今天,本文推出一种创新的校园安防系统,它不仅能够实现特定陌生人的智能跟踪与即时语音报警,还能跨越多个视频监控区域进行无缝检测,并最终生成详尽的人员轨迹路线,为校园安全筑起一道坚实的防线。1.特定人员跟踪:根据待搜索人员已有的照片,在监控视频中进行检索并跟踪,实现特定人员的跟踪并进行语音报警,可支撑跨镜头检测,人员被遮挡后再出现也能及时锁定。
2025-01-21 16:25:02
580
原创 利用OnnxRuntime进行torch模型部署(C++版)——以分类网络为例
近年来,ONNX(Open Neural Network Exchange)格式的兴起为解决这一问题提供了有效的途径。ONNX是一种开放标准,旨在使不同深度学习框架之间能够共享模型。通过将模型导出为ONNX格式,我们可以轻松地在不同框架和平台上进行部署和推理。而ONNX Runtime,作为微软开源的高性能推理引擎,更是为模型的部署提供了强大的支持。本文将重点介绍如何利用ONNX Runtime在C++环境中部署PyTorch模型。,而。通过结合这两者的优势,我们可以实现深度学习模型的高效部署和推理。
2024-12-22 13:03:38
2476
1
原创 AIGC-Stable Diffusion进阶2-CLIP
CLIP 是一种强大的多模态模型,能够在统一的潜在空间中高效对齐和对比文本与图像。这使得它在跨模态任务中表现卓越,尤其是在需要泛化能力的场景下,如零样本学习和跨模态检索。
2024-12-13 00:51:02
1303
原创 plt.hist和np.histogram在绘制直方图的时的不同
数据分析和可视化的世界里,直方图是一种非常直观且有效的工具,能够帮助我们了解数据的分布情况。无论是统计学中的频率分布,还是机器学习中的特征分析,直方图都扮演着不可或缺的角色。plt.hist和。尽管它们的目标相似,但在具体使用和功能细节上却存在着显著的差异。本文将深入探讨这两个方法的不同之处,帮助读者在数据分析和可视化过程中做出更加明智的选择。首先,plt.hist是Matplotlib库中的一个函数,它不仅能够,还能。只需一行代码就能快速生成一个包含数据分布信息的图表。
2024-11-25 00:14:31
1091
原创 利用透视变换实现文档矫正功能
透视变换是将成像投影到一个新的平面上,也称作投影映射。OpenCV通过函数cv2.getPerspectiveTransorm(pos1,pos2)构造矩阵M,其中pos1和pos2分别表示变换前后4个点的对应位置。得到M后再通过函数cv2.warpPerspective(src,M,(cols,rows))进行透视变换。
2024-10-21 20:13:10
567
原创 基于深度学习的人脸多任务识别(附代码)
本项目为人脸多任务识别(单输入,多输出),可以同时输出人脸关键点、性别和年龄。采用了两个算法进行应用的实现,人脸目标检测和人脸多任务识别。其中人脸目标检测采用YOLOV5进行实现,主要对人脸部分进行截取,再送入多任务网络进一步处理
2024-07-06 14:59:07
1236
2
原创 基于YOLOv5的人脸目标检测
本文是在之前的基于yolov5的人脸关键点检测项目上扩展来的。因为人脸目标检测的效果将直接影响到人脸关键点检测的效果,因此本文主要讲解利用yolov5训练人脸目标检测(关键点检测可以看我人脸关键点检测文章)
2024-07-03 14:25:39
3037
4
原创 基于YOLOv5的人脸关键点检测(附代码)
本项目的实现主要依靠两个算法:yolov5目标检测和resnet人脸关键点算法。其中目标检测算法为人脸关键点检测算法的前置算法,使用目标检测算法将人脸信息进行提取(起到前景与背景的分离),然后再对box内的人脸信息进行关键点检测。本项目支持功能:人脸关键点的训练:√人脸关键点的视频检测:√注:本项目为人脸关键点检测,没有在本项目中。
2024-07-03 13:32:58
2508
原创 Reid系列论文学习——无人机场景下基于 Transformer 的轻量化行人重识别
今天介绍的一篇论文是针对无人机场景下的行人重识别,论文题目为:"无人机场景下基于 Transformer 的轻量化行人重识别"。该论文针对无人机场景下行人呈现多角度多尺度的特点、以及传统CNN网络在行人重识别任务中受限于感受野和下采样导致的无法充分提取特征,同时也为了便于算法的部署而提出了一种基于Transformer轻量化Reid网络(Lightweight Transformer-based Person Re-Identification, LTReID)。本人这里并不负责复现。
2024-06-29 12:21:03
2128
原创 Yolov8训练自己的数据集(脱离ultralytics库)
最近在整理关于yolov8的相关内容,有个很大的问题,抛开yolov8性能不谈,yolov8代码的使用灵活性不如yolov5,尤其是对于一些新手或者对yolo框架不是很熟悉的人(这也是因人而异,有些人可能会喜欢v8代码的使用方式)。比如在使用v8的时候需要安装ultralytics库,然后再调用YOLO进行训练或者预测,那么就有这几个问题:问题1:安装了ultralytics库后如何使用YOLO呢?问题2:如果希望像v5一样修改网络或者修改其他代码怎么办?这篇文章就是让你可以像c5一样使用v8代码
2024-05-26 14:54:01
2171
原创 YOLOV8训练自己的数据集教程
YOLOV8是一种先进的目标检测算法,能够在图像和视频中快速准确地识别多个对象。随着计算机视觉和深度学习技术的不断发展,YOLOV8已成为许多领域中的重要工具,包括智能监控、自动驾驶、工业检测等。然而,由于不同应用场景的差异,,因此对于提高检测精度和适应特定场景至关重要。本教程将向各位介绍,以便更好地满足个性化的目标检测需求。,本文章包含了YOLOV8网络结构图的详解。
2024-05-21 11:01:46
2629
原创 YOLOv8原理详解
Yolov8是2023年1月份开源的。与yolov5一样,支持目标检测、分类、分割任务。Yolov8依旧采用的CSP的思想,不过将Yolov5中的C3模块替换为C2F模块,进一步降低了参数量,同时yolov8依旧采用了yolov5中的SPPF模块;Yolov8依旧采用了PAN思想,只不过是将PAN中的上采样阶段中的卷积结构删除,将C3模块替换为了C2F模块;该方法是采用了YOLOX的head部分,分类和回归两个任务的head不再共享参数;YOLOv8使用了Anchor-Free的思想;YOLOv8使用。
2024-05-19 12:05:03
9648
原创 eclipse安装与使用说明
本文章主要记录安装和使用eclipse所遇到的问题。因授课需求,需要安装旧版本的eclipse安装包,特此记录。安装的eclipse为eclipse-java-luna-SR1-win32-x86_64。下载。
2024-05-16 18:35:45
1746
原创 AIGC-Stable Diffusion进阶1(附代码)
在上篇文章中对Stable Diffusion进行了初步的认识,也给出了使用案例,这篇文章将进一步的去刨析一下SD模型。
2024-05-14 11:43:23
1497
原创 YOLOv5手势物体识别(附代码)
之前是做的yolov3手势物体识别,最近几天我将该项目进行了重新的整理和升级,实现了yolov5手势物体识别,同时为了方便更多的人直接拿来应用,我生成了支持windows系统的应用小程序,即便你电脑上没有安装pytorch,没有安装cuda、python,都可以使用~!
2024-05-04 02:43:51
3348
9
原创 YOLOv8 Reid(附代码,行人重识别)
该项目利用yolov8+reid实现的行人重识别功能。应用场景:可根据行人的穿着、体貌等特征在视频中进行检索,可以把这个人在各个不同摄像头出现时检测出来。可应用于犯罪嫌疑人检索、寻找走失儿童等。支持功能:1.训练2.人员标注3.Reid(行人重识别)环境说明:(项目中有requirements.txt)mss==7.0.1。
2024-04-20 15:35:38
6004
1
原创 分类网络(支持特征可视化)附代码
这几天我们对分类网络项目进行了更新,现在已经可以提供给有需求的人使用了。如果您对此感兴趣,请随时自取。1.支持训练自己的数据集2.tensorboard训练可视化3.增加ROC评价指标4.支持ResNet网络、MobileNet、Alexnet、vgg16、Vit5.支持特征可视化6.支持冻结训练1.剪枝训练2.知识蒸馏训练3.利用目标检测和分类做接打电话和吸烟行为检测。
2024-04-19 01:33:15
1352
深度学习+目标检测+训练自己的数据集+tensorrt推理+语音报警+目标跟踪与计数
2023-03-09
深度学习+目标检测+训练自己数据集+YOLOX+剪枝+轻量化
2023-03-09
onnx转engine报错
2022-10-21
有关pytorch模型保存和加载问题
2022-05-05
权重剪枝后的模型如何加载到原网络中?
2021-10-28
pytorch训练好的模型如何工业部署
2021-03-20
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅