自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(108)
  • 问答 (4)
  • 收藏
  • 关注

原创 Reid系列论文学习——换装Reid

今天要学习的有关Reid的论文是2019年提出的一篇名为:Beyond Scalar Neuron: Adopting Vector-Neuron Capsules for Long-Term Person Re-Identification.大多数Reid的研究都聚集在人员,也就是说针对人员来说,数据分布相似度是比较大的。但在一些场景中人员是有可能换衣服的,这里举个例子,比如在追寻一个嫌疑人,该嫌疑人在A场景穿的红色衣服,当他进入B场景后换了一件黑衣服,那么用传统的方法可能就不太行了。因此这篇文章。

2024-06-21 00:51:31 491

原创 Yolov8训练自己的数据集(脱离ultralytics库)

最近在整理关于yolov8的相关内容,有个很大的问题,抛开yolov8性能不谈,yolov8代码的使用灵活性不如yolov5,尤其是对于一些新手或者对yolo框架不是很熟悉的人(这也是因人而异,有些人可能会喜欢v8代码的使用方式)。比如在使用v8的时候需要安装ultralytics库,然后再调用YOLO进行训练或者预测,那么就有这几个问题:问题1:安装了ultralytics库后如何使用YOLO呢?问题2:如果希望像v5一样修改网络或者修改其他代码怎么办?这篇文章就是让你可以像c5一样使用v8代码

2024-05-26 14:54:01 1131

原创 YOLOV8训练自己的数据集教程

YOLOV8是一种先进的目标检测算法,能够在图像和视频中快速准确地识别多个对象。随着计算机视觉和深度学习技术的不断发展,YOLOV8已成为许多领域中的重要工具,包括智能监控、自动驾驶、工业检测等。然而,由于不同应用场景的差异,,因此对于提高检测精度和适应特定场景至关重要。本教程将向各位介绍,以便更好地满足个性化的目标检测需求。,本文章包含了YOLOV8网络结构图的详解。

2024-05-21 11:01:46 1312

原创 YOLOv8原理详解

Yolov8是2023年1月份开源的。与yolov5一样,支持目标检测、分类、分割任务。Yolov8依旧采用的CSP的思想,不过将Yolov5中的C3模块替换为C2F模块,进一步降低了参数量,同时yolov8依旧采用了yolov5中的SPPF模块;Yolov8依旧采用了PAN思想,只不过是将PAN中的上采样阶段中的卷积结构删除,将C3模块替换为了C2F模块;该方法是采用了YOLOX的head部分,分类和回归两个任务的head不再共享参数;YOLOv8使用了Anchor-Free的思想;YOLOv8使用。

2024-05-19 12:05:03 937

原创 eclipse安装与使用说明

本文章主要记录安装和使用eclipse所遇到的问题。因授课需求,需要安装旧版本的eclipse安装包,特此记录。安装的eclipse为eclipse-java-luna-SR1-win32-x86_64。下载。

2024-05-16 18:35:45 751

原创 AIGC-Stable Diffusion进阶1(附代码)

在上篇文章中对Stable Diffusion进行了初步的认识,也给出了使用案例,这篇文章将进一步的去刨析一下SD模型。

2024-05-14 11:43:23 993

原创 YOLOv5手势物体识别(附代码)

之前是做的yolov3手势物体识别,最近几天我将该项目进行了重新的整理和升级,实现了yolov5手势物体识别,同时为了方便更多的人直接拿来应用,我生成了支持windows系统的应用小程序,即便你电脑上没有安装pytorch,没有安装cuda、python,都可以使用~!

2024-05-04 02:43:51 1836 9

原创 YOLOv8 Reid(附代码,行人重识别)

该项目利用yolov8+reid实现的行人重识别功能。应用场景:可根据行人的穿着、体貌等特征在视频中进行检索,可以把这个人在各个不同摄像头出现时检测出来。可应用于犯罪嫌疑人检索、寻找走失儿童等。支持功能:1.训练2.人员标注3.Reid(行人重识别)环境说明:(项目中有requirements.txt)mss==7.0.1。

2024-04-20 15:35:38 1925

原创 分类网络(支持特征可视化)附代码

这几天我们对分类网络项目进行了更新,现在已经可以提供给有需求的人使用了。如果您对此感兴趣,请随时自取。1.支持训练自己的数据集2.tensorboard训练可视化3.增加ROC评价指标4.支持ResNet网络、MobileNet、Alexnet、vgg16、Vit5.支持特征可视化6.支持冻结训练1.剪枝训练2.知识蒸馏训练3.利用目标检测和分类做接打电话和吸烟行为检测。

2024-04-19 01:33:15 1075

原创 Yolov7 Reid【附代码,行人重识别,可做跨视频人员检测】

本项目使用Yolov7+Reid实现的行人重识别功能,可做跨视频人员检测。应用场景:可根据行人的穿着、体貌等特征的Reid算法在视频中进行检索,可以把这个人在各个不同摄像头出现时检测出来。可应用于犯罪嫌疑人检索、寻找走失儿童等。支持GUI界面。支持功能:1.训练2.人员标注3.人员查找(可做。

2024-03-31 14:46:11 1783 2

原创 Qt开发(2)——在已有VS项目中配置Qt

在之前的Qt开发学习中,基本都是在Qt Creator中创建一个Qt项目,或者即便是在VS中也是直接新建一个Qt项目。但很少有记录如何在已有的C++项目中添加Qt,这就好比我有个项目已经开发完了,现在又说加个Qt界面的功能。这篇文章就是记录如何在已有项目上配置Qt。

2024-03-24 21:57:45 2887 3

原创 基于yolov5的数据集自动标注功能脚本工具【附代码】

近年来,随着深度学习的迅猛发展,计算机视觉领域取得了巨大的突破。其中,目标检测是计算机视觉中的一个重要任务,它在许多应用领域中起到了至关重要的作用。然而,目标检测所需的大量标注数据集的制作却是一项耗时且繁琐的工作。为了解决这个问题,本文实现了一个基于YOLOv5的自动数据集标注功能脚本。YOLOv5是当今目标检测领域的一种优秀模型,其高效准确的检测能力被广泛认可。我们的自动数据集标注工具通过使用已经训练好的YOLOv5模型,可以快速而准确地对输入的图像进行目标检测,将检测结果存储为标签文件(xml格

2024-01-28 16:06:12 2543 5

原创 PyQt---基本界面设计【附代码】

Qt是GUI开发中的一个工具,可以根据用户需求进行程序界面的开发。Qt的开发有C++版的和python版的,不论你有哪种编程语言的基础都很好上手学习。PyQt5是Qt框架的Python语言实现,也是本文将要介绍的,并将会建立一个PyQt专栏不断更新供大家学习。

2023-12-11 15:48:31 5459 1

原创 AIGC-Stable Diffusion

Stable Diffusion(稳定扩散)是一种生成式大模型,它在AI领域中标志着一个新的里程碑,为我们揭示了未来将会是AIGC的时代。传统的深度学习模型逐渐向AIGC过渡,这也意味着我们需要学习更多关于AIGC的内容。如果你和我一样是AIGC的,那么学习AIGC模型的基础知识是非常重要的。Stable Diffusion作为一个强大的模型,有着很高的适用性,特别是在生成式任务方面。通过学习它的基本理论和应用,可以更好地理解复杂网络中的信息传播规律,并掌握不同场景下的生成技术。

2023-12-07 14:07:01 1163

原创 AIGC-从代码角度去理解DDPM(扩散模型)

最近准备要学习一下AIGC,因此需要从一些基本网络开始了解,比如DDPM,本篇文章会从来供大家学习了解。DDPM(Denoising Diffusion Probabilistic Models) 是一种扩散模型。和。对应到上述图中,从x0到xt是加噪的过程,从xt到x0是去噪的过程。前向加噪过程和反向去噪过程都是,全过程大约需要步。是对输入数据不断的加噪声(高斯噪声)。是对从标准高斯分布中逐步地得到一个个噪声样本,最终得到生成的样本的数据。

2023-12-02 11:35:14 789 1

原创 yolov5+车辆重识别【附代码】

本篇文章主要是实现的yolov5和reid结合的车辆重识别项目。是在我之前实现的yolov5_reid行人重识别的代码上修改实现的baseline模型。

2023-10-15 13:23:40 2464 11

原创 有关数据集处理的脚本工具【附代码】

在做分类项目的时候(包括目标检测),经常会涉及到数据集的预处理,这里我将把一些自己写的工具脚本代码开源出来供大家使用,后期也将不定时的更新。相关功能:1.分类任务one-hot标签转单标签2.数据集中各个类别的统计3.数据集中图片宽、高分布,宽高比分布4.针对数据集中极端宽高比的图片进行可视化。

2023-10-12 18:37:43 359

原创 分类网络的评价指标

在分类网络中常用到的评价指标其实有很多,比如准确率(Acc)、错误率(ErroRate)、精确率(Precision)、召回率(Recall)、F1、ROC等等。

2023-10-11 21:32:53 486

原创 基于yolov5的onnx精度测试[附代码]

我们在训练好自己的yolov5模型后,需要对模型进行部署,大多是将torch转为onnx格式进行使用.但在部署之前需要对转的onnx模型进行精度上的测试,,如果不一致或差距较大还需要进一步的调整.将会在你的项目中生成对应的onnx模型.可以通过Netron对onnx模型进行可视化.如果你不想下载Netron,可以访问网页版的我这里将提供三种方式来测试转化后的onnx精度.

2023-10-08 17:08:56 1174

原创 基于yolov5的ignore classes训练

我们在标注数据集的时候都是标注的正样本,训练过程中也是这样训练,让网络对正样本计算loss。但我们也遇到过这样的目标,这个目标即不属于正样本,也不属于负样本,比如正样本是person,那么人形雕塑或者人的影子,这类物体他并不是正样本,但如果直接归为负样本也是不严谨的,因此就可以将这类物体标注为“忽略类”

2023-09-27 16:47:26 632 2

原创 Vision Transformer(vit)原理分析以及特征可视化

Vision Transformer(ViT)是一种基于架构的深度学习模型,用于图像识别和计算机视觉任务。与传统的卷积神经网络(CNN)不同,ViT直接,并利用自注意力机制来处理图像中的像素关系。ViT通过将图像分成一系列的,并。然后,这些向量将通过多层的Transformer编码器进行处理,其中包含了。这样可以。最后,通过对Transformer编码器输出进行分类或回归,可以完成特定的视觉任务。为什么不能直接将transformer直接应用于图像处理中呢?

2023-08-29 17:42:29 9165 14

原创 YOLOv5 tensorRT C++代码详解之engine的读取

engine文件的读取需要用到ifstreamifstream – 从已有的文件读入ofstream – 向文件写内容fstream - 打开文件供读写文件打开模式:ios::in 只读ios::out 只写ios::app 从文件末尾开始写,防止丢失文件中原来就有的内容ios::binary 二进制模式ios::nocreate 打开一个文件时,如果文件不存在,不创建文件ios::noreplace 打开一个文件时,如果文件不存在,创建该文件。

2023-08-20 12:41:05 1454 2

原创 Transformer理论学习

Transformer出自于论文《attention is all you need》。一些主流的序列模型主要依赖于复杂的循环结构或者CNN,这里面包含了编解码器等。而Transformer主要的结构是,而且是用多头注意力机制去替换网络中的循环或者CNN(换言之就是这个网络模型是不需要循环结构和CNN,只用注意力机制就行一些循环神经网络,比如LSTM,GRU等都是由编码器-解码器构成。以RNN为例,在计算序列的时候(比如一个句子),会一个词一个词的计算,对于第个词,会计算一个隐藏状态叫。

2023-08-09 00:11:16 903

原创 自制聊天机器人实现与chatgpt或微信好友对话【附代码】

闲来无事,想实现一个可与或者对话的聊天机器人。该聊天机器人还可应用于QQ好友或者其他地方的语音输入。功能还是比较简单的,后期会慢慢更新,让人机交互体验感不断提升。项目描述:语音输入(等待时间为2秒,可自行调整),再将输入到对话框中(识别时长为5秒,可自行调整),语音输入"关闭语音助手"将提出程序。利用语音识别完成文字输入,实现聊天功能。

2023-06-29 18:27:06 981

原创 基于SSD算法的电动车头盔检测【附代码】

本项目是基于SSD算法实现的电动车头盔检测。完整的项目是基于SSD的改进-->知识蒸馏-->自蒸馏-->剪枝-->trt推理。本想用来发论文的,但可能没那时间和精力了,这里仅选择项目中的一部分内容进行开源。

2023-06-19 16:25:32 1814

原创 AI换脸(支持视频换脸,支持cpu、低算力)【附代码】

可直接选择一张人脸去替换另一张图片或者视频中的人脸。本项目部分,不需要数据集,不用训练!下面可以给出效果图。拿我喜欢的斗破苍穹为例,将云昀的脸换到美杜莎女王脸上。

2023-06-06 15:04:21 7492 10

原创 通过训练NLP制作一个自己的简易输入法

最近开始研究NLP,然后根据手写CV UP主的视频,写了一个N Gram的NLP模型,算是该领域里的hello world吧。然后我又添加了几行代码实现了一个。项目说明:数据集可以自创,导入txt文件即可;单词联想功能:输入前两个单词,预测(联想)第三个单词【也就是输入法中的提升功能】本人有关NLP学习记录可以参考下面的博客【会持续更新】

2023-05-29 16:17:16 2214

原创 NLP(自然语言处理)学习记录

这几年一直都在研究CV领域,后面想抽点时间学习一下NLP方面的东西【纯个人兴趣爱好】,本人从来没有接触过NLP方面的学习,也不知道怎么学习,因此只能东一榔头西一棒槌的学了,希望可以快速系统的学起来~会专门建立一个专栏用来学NLP,后续会不定时的更新分享,如果有这方面的大佬也可以指点一下。后续的学习计划会希望,欢迎支持。零基础学NLP,第一部分就是专业名词的解读。就和当初学CV的时候一样,需要理解什么是卷积,通道指什么,特征图又是指什么等等。NPL亦是如此,比如,词向量、词嵌入、分布式表示等等。

2023-05-28 15:52:00 914

原创 Reid strong baseline知识蒸馏【附代码】

本项目是在Reid strong baseline基础上进行的更新,实现的知识蒸馏。项目暂未加入目标检测部分,后期会不定时更新,请持续关注。本相比Reid所用数据集为Markt1501,支持Resnet系列作为训练的baseline网络。训练采用表征学习+度量学习的方式,蒸馏【暂未更新逻辑蒸馏】。1.仅支持markt1501数据集2.支持resnet网络系列训练(未蒸馏)3.支持resnet系列训练(暂为更新离线蒸馏和逻辑蒸馏)4.可自由选择教师网络和学生网络(本项目的特点)

2023-05-26 20:35:29 1687 3

原创 yolov5剪枝与知识蒸馏【附代码】

剪枝和知识蒸馏均属于模型轻量化设计,剪枝是将已有网络通过剪枝的手段得到轻量化网络,可分为和,该技术,而是通过计算各个权重或者通道的贡献度大小,剪去贡献度小的权重或通道,再,得到最终的模型,这种方法自然也是可以的,但在某些任务中,如果剪枝较多效果会很差,即便微调训练也恢复不了多少精度。,同时在我其他博客中还实现了知识蒸馏是在一个精度高的大模型和一个精度低的小模型之间建立损失函数,将大模型"压缩"到小模型中【并不是严格意义上的压缩】。

2023-05-21 20:32:50 6934 27

原创 电动车头盔检测数据集

现在正慢慢整理自己有关电动车头盔检测的项目内容,会逐渐将这些资源进行发布,供大家参考和使用【部分资源有偿提供,毕竟花费了很多心血】。这篇文章主要是发布相关数据集的。网上关于有很多,而且多种多样,但有关电动车头盔检测的资源比较少,不仅仅是论文数量方面,数据集也是少的可怜。如果自己制作数据集又太耗时间【自己做过数据集的都应该知道】。为了可以让大家不用在数据集的收集和制作上面浪费太多时间,我这里将相关数据集【毕竟也是自己一张张标注的】。言归正传,下面将对数据集进行说明。

2023-05-20 15:37:58 2114 9

原创 Reid strong baseline 代码详解

本项目是对Reid strong baseline代码的详解。项目暂未加入目标检测部分,后期会不定时更新,请持续关注。本相比Reid所用数据集为Markt1501,支持Resnet系列作为训练的baseline网络。训练采用表征学习+度量学习的方式。

2023-05-16 16:28:42 2460 8

原创 Reid度量学习Triplet loss代码解析。

该文章是对之前Reid损失函数理论学习的补充。从代码方面进行Triplet loss(三元组损失函数)的学习。以及包含Tirplet hard是如何找最困难的正负样本。

2023-05-04 18:09:29 1405

原创 Reid之损失函数理论学习讲解

基于深度学习的Reid主要流程为输入图像-->CNN(提取特征)-->Global average pooling-->特征向量,将用这些特征来衡量图像的相似情况。并用这些特征进行检索,返回分类情况。在训练网络的时候需要涉及损失函数,因此就引出了表征学习和度量学习。这篇文章就是帮助学习理解这两类损失函数的理论。

2023-04-27 18:57:37 1804

原创 Reid之网络的定义代码详解

1.cls_score是分类情况【这里是没有经过softmax的,因此还是hard label】,2.第二个值是全局特征global_feat【这个是经过平均池化后的特征层】。ResNet代码如下,由于我们设置的last_stride为1,因此layer4的尺寸并不会减半。如果是测试阶段,当neck_feat='after'的时候,之间返回特征层(注意,没有分类hard label)。代码的详解,有助于大家的理解,同时也方便网络方面的改进。的时候,也就是traning=True的时候,此时会。

2023-04-27 12:57:35 1091

原创 Reid训练代码之数据集处理

本篇文章是对这篇文章训练部分的详解。该项目目录为:|-- config # reid输入大小,数据集名称,损失函数等配置|-- configs # 训练时期超参数定义|-- data # 存储数据集和数据处理等代码,以及yolov5类别名称等|-- engine # 训练和测试mAP,rank等相关代码|-- layers # loss定义|-- logs # 训练好的权重将存储在这|-- modeling # 定义的网络|-- output # 输出。

2023-04-25 21:01:46 2145 2

原创 知识蒸馏之自蒸馏【附代码】

本篇文章为在线蒸馏,将以Resnet为例进行代码详解,主要涉及到逻辑蒸馏和特征蒸馏。内容比较多,系好安全带,发车~在学习本篇文章时需要各位对Resnet代码有很深的了解,这样才好学习本篇文章

2023-04-23 14:37:20 3489 8

原创 卷积神经网络轻量化教程之通道剪枝【附代码】

这两天自己手写了一个可以简单实现通道剪枝的代码,在这篇文章中也会对代码进行讲解,方便大家在自己代码中的使用。更新内容:2023.04.21更新内容:对上述剪枝代码进行了整理,同时加入了2D和3D权重的绘制。如果还想学习YOLO系列的剪枝代码,可以参考我其他文章,下面的这些文章都是我根据通道剪枝的论文在YOLO上进行的实现,而本篇文章是我自己写的,也是希望能帮助一些想学剪枝的人入门,希望多多支持:

2023-04-19 09:37:54 4580 9

原创 Resnet代码详解

这篇文章是用来讲解Resnet(残差网络)代码的,结合代码理解残差网络结构。目录Bottleneck类Conv3×3Conv1×1 BasicBlock ResNet _make_layer代码解析完整的ResNet代码:可以直接调用torch内置的resnet官方代码。不论是调用resnet50还是resnet101,这些模型都是调用的Resnet模型。因此我们仅需要看这个类就可以。在ResNet这个类中又由Bottleneck(瓶颈层)、3×3卷积层、1×1卷积层、BasicBlock组成。接下来

2023-04-16 15:17:41 4995

原创 多进程与多线程学习【附代码】

多进程相当于多核处理,可以把任务平均分配给每一个核,并且让他们同时进行线程是进程的子集,一个进程可以有多个线程组成,多进程的数据是分开的、共享复杂,但同步简单。多线程共享进程的数据,共享简单,但同步复杂多进程:即正在运行的应用程序,通常称为进程。每个进程都有自己独立的地址空间(内存空间),每当用户启动一个进程时,操作系统会给该进程开辟一块空间。在同一时间里,同一个计算机系统中运行两个或多个进程处于运行状态,这种就说多进程,也称为多任务。多进程的特点:1.数据是分开的,共享复杂,同步简单。

2023-04-06 11:09:03 419

深度学习+目标检测+训练自己数据集+YOLOX+剪枝+轻量化

采用pytorch深度学习环境,目标检测为YOLOX,可做剪枝。 功能描述: 1.可训练自己数据集 2.支持图像推理 3.支持视频推理 4.支持mAP测试 5.支持任意层的剪枝 6.支持多种模型 7.支持微调训练 内含readme文件,可快速上手。代码成熟,已有多人测试适用 适用人群:研究人员,研究生,大学生,深度学习研究人员。

2023-03-09

深度学习+目标检测+训练自己的数据集+tensorrt推理+语音报警+目标跟踪与计数

采用pytorch环境,目标检测算法采用yolov4,支持onnx推理,tensorrt推理,涵盖训练与推理教程以及相关博文链接。 功能描述: 1.支持目标检测 2.支持torch格式推理 3.支持onnx推理 4.支持tensorrt推理 5.支持指定类别的检测 6.支持指定类别语音报警 7.支持指定类别的目标跟踪 8.多进程任务 目标跟踪支持IOU、DIOU。可做CIOU跟踪,可训练自己的数据集,内含readme说明,详细说明代码如何使用。 适用人群:计算机视觉学习人员,研究生,大学生

2023-03-09

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除